Archivos de la categoría: Materiales

La ciencia de los materiales del futuro: el grafeno y la creación de empresas

Este ha sido el tema de la conferencia impartida en la sede de la Fundación Pons el 5 de nociembre de 2014, dentro de las actividades de la Semana de la Ciencia.

En la conferencia se han presentado resultados de un nuevo método de exfoliación de grafito para obtener grafeno y derivados de grafeno (composites) que han dado lugar a la patente P201331382 y la PCT/ES2014/070652; así como a la creación de la Empresa de Base Tecnológica Gnanomat.

Continuar leyendo

Algunas aplicaciones de los polímeros

Mira a tu alrededor ¿qué ves? Yo estoy viendo un ordenador, cuya carcasa está fabricada con está fabricada con una poliofefina o un policarbonato y que contiene poliuretanos modificados como retardadores de llama, que evitan posibles incendios provocado por el calor generado por los componentes electrónicos. También tengo cerca de mi, la funda del ordenador, quee está fabricada de neopreno, que es el mismo material con el que se hacen los trajes para deportes extremos, como el submarinismo.

Continuar leyendo

Curso de divulgación: Los Avances de la Química y su Impacto en la Sociedad.

El curso de divulgación «Los Avances de la Química y su Impacto en la Sociedad» comenzará el próximo 10 de enero (jueves) a las 18:00.

La conferencia inaugural será a cargo de la profesora María Vallet-Regí con el título «¿Puede la química contribuir a reparar el cuerpo humano?«

La profesora Vallet-Regí es uno de los científicos mundiales más destacados en el área de biomateriales y nos va a explicar algunos de los avances más importantes y recientes en este área de investigación.

Todas las sesiones tendrán lugar en el salón de actos del edificio del CSIC en la calle Serrano 113. Es el edificio que está a la izquierda de la entrada principal del campus central del CSIC. Las líneas de autobuses 51 y 19 tienen paradas en la puerta del CSIC. La línea Circular de autobuses también tiene parada cercana (calle Joaquín Costa esquina a la calle Velázquez) y la estación de metro República Argentina está cerca de la sede central del CSIC. Tampoco está lejos la estación de metro de Avenida de América (salida Príncipe de Vergara).

El curso constará de 11 conferencias (los jueves entre el 10 de enero y el 21 de marzo) y dos mesas redondas (los lunes 4 de febrero y 4 de marzo). El programa y el calendario del curso se puede consultar en esta página web. En la web Los Avances de la Química se irá colgando información del curso y también se informará en esta página de Facebook y en esta cuenta de Twitter.

El curso en gratuito y la asistencia es libre, se puede asiatir a las sesiones que se deseen. Las personas interesadas podrán tener un diploma de asistencia si asisten a un mínimo de ocho sesiones.

Para obtener más información contactar con [email protected]

 

 

Bernardo Herradón
CSIC
[email protected]

 

Fármacos, nanomedicina y biomateriales.

Los próximos 24 y 25 de abril tendrá lugar en la sede de Real Academia de Farmacia, el Simposio Internacional sobre Fármacos, nanomedicina y biomateriales: un objetivo común; organizado por la profesora María Vallet-Regí (Facultad de Farmacia, Universidad Complutense de Madrid). La asistencia es gratuíta, pero es conveniente inscribirse (a través del folleto informativo, ver más abajo).

Este Simposio versará sobre fármacos, nanomedicina y biomateriales, como lugar de encuentro en la búsqueda y consecución de un objetivo común: remediar el dolor, la enfermedad, y el deterioro de nuestros cuerpos, en aras de la consecución de una mejor calidad de vida. Se desarrollarán ponencias sobre como:

• Diseñar nanoestructuras para mejorar la administración de fármacos.

Evitar efectos secundarios no deseados durante la administración de fármacos citotóxicos.

• Diseñar nanopartículas como elementos para dispositivos destinados a lograr una liberación de fármacos altamente tóxicos, de forma que se dirijan directamente hacia los tumores, y de esta forma se consigan emplear dosis adecuadas, mínimas con respecto a las empleadas en quimioterapia, que garanticen la muerte de las células tumorales sin afectar a las sanas.

• La nanotecnología se está desarrollando de forma acelerada e incesante hacia la prevención y tratamiento de enfermedades infecciosas y agresivas que no se pueden tratar con éxito con las técnicas convencionales.

• Los avances incesantes en la preparación de nanosistemas con aplicaciones en el campo de la medicina han dado lugar a nuevos retos en el diseño de materiales inteligentes capaces de responder a las exigencias clínicas.

• Diseñar dispositivos y técnicas para lograr imágenes del tejido tumoral.

• Fabricar, cuando sea necesario, piezas de repuesto para el cuerpo humano utilizando la ingeniería de tejidos y la terapia celular.

Para más información se puede descargar el folleto informativo con el programa detallado de las ponencias.

Bernardo Herradón García
CSIC
[email protected]

Actividades de la RACEFyN

La Real Academia de Ciencias Exactas, Físicas y Naturales (RACEFyN) ha programado dos conferencias sobre química y astrofísica para las próximas semanas. También organizan el ciclo de conferencias, de carácter divulgativo Ciencia para Todos, que ya celebra su octava edición. Este ciclo de conferencias se celebra cada jueves hasta el 28 de junio. Se puede encontrar información de cada una de estas actividades en las imágenes siguientes (pulsando sobre las imégenes s epuede aumentar su tamaño).

 

Bernardo Herradón García
CSIC
[email protected]

Los materiales nanoestructurados en nuestra vida diaria. Entrevista a Rosa Menéndez.

Entrevista realizada por Lorena Cabeza (DIVULGA) para Profes.net

Rosa Menéndez nació en Corollos, Asturias, en 1956. Tras graduarse en Química y doctorarse en esta misma disciplina por la Universidad de Oviedo en 1986, pudo llevar a cabo varias estancias postdoctorales en Inglaterra y Estados Unidos. En 1989 se incorpora al Instituto Nacional del Carbón del CSIC, donde actualmente lleva a cabo su trabajo como profesora de investigación. Entre los años 2003 y 2008 ha sido directora de este instituto, y entre 2008 y 2009 ostentó el cargo de vicepresidenta de Investigación Científica y Técnica del CSIC. Es autora de más de 160 artículos en revistas científicas de impacto y ha dirigido 16 tesis doctorales. Su investigación se centra en la química de los materiales y la energía, y en concreto en la mejora de los procesos de conversión del carbón y la puesta en valor de sus derivados y los del petróleo. También dirige una línea de investigación sobre la síntesis química del grafeno, un material que puede revolucionar nuestras vidas en un futuro cercano.

¿Qué trabajo lleva a cabo en el INCAR?

R.- Desde comienzos de los años 90 venimos desarrollando materiales de carbono de características muy distintas, como fibras de carbono, materiales compuestos, carbones activados y en los últimos años materiales grafénicos. Partiendo de derivados del carbón y del petróleo, preparamos precursores específicos para cada tipo de material. Y el material, a su vez, viene condicionado por la aplicación para la que está previsto. Nuestros materiales encuentran aplicación en el sector aeronáutico, con materiales compuestos; el almacenamiento de energía, con carbones activados y grafenos; la catálisis, con carbones activados y grafenos; y el medio ambiente, con carbones activados y grafenos para la eliminación de contaminantes en vertidos industriales.

¿Qué son los materiales nanoestructurados? ¿Cuál es su ventaja respecto a otros materiales convencionales?

R.- Desde que se comenzó a trabajar en nanotecnología, en la década de los 80, se han tratado de desarrollar nuevos métodos de producción de materiales constituidos por cristales de un tamaño inferior a los 100 nanómetros, los llamados materiales nanoestructurados. Cuando se reduce el tamaño de los materiales al rango nanométrico, se inducen diferencias en sus propiedades físicas. También los procesos superficiales se ven fuertemente alterados. Por ello, un control preciso de las dimensiones de los materiales en el rango de los nanómetros nos permite variar sus propiedades. Esto abre la puerta al diseño de materiales para mercados muy diversos como las aplicaciones biomédicas, ópticas, en energía, etc.

¿Están presentes los materiales nanoestructurados en nuestra vida diaria?

R.- Lo están desde hace años. Por ejemplo, los ordenadores han experimentado desde los años 90 mejoras muy importantes debido precisamente al uso de materiales nanoestructurados. Los paneles solares fabricados con nanomateriales también permiten minimizar el empleo de bloques de silicio. Otros materiales comunes que contienen nanopartículas son las cremas solares, donde se emplean para absorber la radiación UV, además de para facilitar su incorporación a la piel. También se emplean nanopartículas de plata como agentes biocidas para minimizar el riesgo de contraer infecciones. Los nanomateriales también están presentes en el deporte: bicicletas con nanotubos de carbono, raquetas de tenis reforzadas con estos nanotubos, etc. Y todavía son muchas más las aplicaciones que se esperan en los próximos años: leds fabricados a partir de puntos cuánticos mucho más baratos que los actuales, materiales capaces de introducirse en nuestro cuerpo y atacar selectivamente células cancerígenas, etc.

¿Son estos materiales seguros?

R.- La mayoría de los nanomateriales no son más peligrosos que sus equivalentes “macro”. Por ejemplo, los materiales en forma de películas delgadas que conforman las memorias de los ordenadores no son más dañinas por el hecho de ser nano. En general, debemos distinguir dos casos: uno, los nanomateriales adheridos a otros materiales, que no resultan más peligrosas que las micropartículas correspondientes (depende solo de su naturaleza: el arsénico es igual de tóxico nanoestructurado o no); y dos, nanopartículas dispersas en el aire, que pueden resultar más peligrosas al ser inhaladas.

¿Cuáles son los materiales avanzados más prometedores en los que se está investigando?

R.- El mundo de los materiales es muy amplio, pero todo lo relacionado con nanomateriales, láminas delgadas y materiales inteligentes está dentro de lo más prometedor. En concreto, existen grandes expectativas en relación con los materiales grafénicos por su gran potencial para aplicaciones que van desde el campo de las comunicaciones y microelectrónica a otros ámbitos como la química fina y la energía, en producción y almacenamiento. Se trata de un material con unas propiedades electrónicas únicas, además de una especial resistencia y flexibilidad.

¿Qué características son las que hacen del grafeno un material tan especial?

R.- El grafeno, formado por una capa de átomos de carbono, es a la vez metálico, flexible y transparente. Es resistente, sus constantes elásticas son las más altas que se han medido en un material, y admite tensiones muy elevadas sin romperse. Es además muy impermeable, ya que no permite el paso de átomos y moléculas a pesar de su pequeño espesor. Desde el punto de vista químico es un material inerte.

¿En qué aplicaciones concretas se espera que se use?

R.- El hecho de presentar unas excelentes propiedades mecánicas, térmicas, eléctricas y ópticas, le convierte en candidato para un gran número de aplicaciones en áreas tan diversas como la nanoelectrónica, los sensores moleculares, las telecomunicaciones, los componentes mecánicos, en forma de material compuesto, almacenamiento de energía y salud, por ejemplo, en la liberación controlada de fármacos.

¿En qué fase se encuentra la investigación sobre grafenos?

R.- La investigación sobre grafenos avanza de forma rápida, a pasos agigantados científicamente hablando. En estos momentos el objetivo es buscar procesos que permitan su obtención en grandes cantidades, de forma competitiva desde el punto de vista económico y energético, y respetando el medio ambiente. Las expectativas superan con creces a las planteadas por los fullerenos y nanotubos de carbono en su día, y parecen estar más próximas a su materialización. Tienen la ventaja de la variedad y simplicidad de los procesos y de la variedad en la calidad de los materiales, con lo que pueden ser utilizados en aplicaciones muy diversas. Para la utilización masiva de los grafenos todavía queda mucho camino por recorrer y mucha investigación por realizar.

¿Cómo se obtiene el grafeno?

R.- Se utilizan fundamentalmente dos vías para su síntesis, a partir del grafito o materiales grafíticos: mediante la separación de las láminas de grafeno individuales mecánicamente o por vía química -lo que se denomina método top-down-, y mediante síntesis química o depósito en fase de vapor a partir de moléculas más pequeñas –el método bottom-up-. La primera incluye también la obtención de grafenos mediante apertura de nanotubos. Cada una de ellas dispone de un amplio abanico de precursores y condiciones de proceso que enriquecen o dificultan, según se mire, la consecución del material final. En nuestro grupo los estamos preparando por vía química, utilizando distintos grafitos de partida y aplicando distintos procedimientos de reducción, y también por apertura de nanofibras y nanotubos, y mediante exfoliación mecánica del grafito.

Y, ¿qué hay de los fullerenos?

R.- Los fullerenos han marcado un hito desde el punto de vista científico. Se mostró al mundo una nueva forma de carbono que nadie hubiese imaginado. Supusieron un salto cualitativo en la ciencia del carbono, hasta entonces basada en las dos formas alotrópicas conocidas por todos, el grafito y el diamante. Se ha trabajado intensamente en la búsqueda de aplicaciones para este material en campos como la biomedicina o la energía, pero en mi opinión no se han consolidado y siguen siendo materia de investigación después de más de veinte años. También es relevante el que abrieran el camino al descubrimiento de los nanotubos de carbono, que sí se están produciendo a escala industrial y están ampliando considerablemente su rango de aplicaciones.

Nanopartículas a medida por métodos químicos

 El futuro de la humanidad dependerá de tener instrumentos útiles en nuestro trabajo, tecnologíaa, ocio y vida cotidiana. Estos instrumentos se fabricarán con materiales adecuados. Por razones prácticas (propiedades mejoradas y modulables) y energéticas, se tenderá a minimizar el tamaño de los artilugios.

Para alcanzar estos objetivos serán fundamentales los avances científicos y tecnológicos en nanociencia, en la que la química tiene mucho que aportar en el diseño, preparación y caracterización de nanomateriales.

La nanociencia y sus aplicaciónes (nanotecnología) es un áreas de la ciencia de los materiales que aborda el estudio de objetos (una nanopartícula, NP) en escala nanométrica (orden de escala de centenares de nanometros, nm, 1 nm = 10-9). Ya existen numerosas aplicaciones industriales de los nanomateriales, con más de 1000 productos en el mercado que contienen nanopartículas (NPs), desde productos de cosmética a material deportivo. Esta es un área de negocio con un desarrollo muy amplio y unas excelentes perspectivas de futuro.

Actualmente existen muchos materiales nanoparticulados, especialmente derivados de metales de transición, como el oro, los óxidos de hierro, el dióxido de titano, el óxido de zinc o el paladio, que se están aplicando en diversas investigaciones en fase académica, tales como la catálisis, transferencia energética, materiales magnéticos, etc. Otras aplicaciones prácticas de la nanotecnología serán en el desarrollo de equipos pequeños para monitorización (ambiental, salud, etc.) o en la fabricación de nanocápsulas para transporte de fármacos. Se podrán liberar fármacos en los órganos adecuados del paciente sin afectar a otras partes del cuerpo. Las nanocápsulas podrán dirigirse al sitio adecuado, por ejemplo usando materiales magnéticos.

Uno de los objetivos de la nanociencia es obtener NPs con estructuras determinadas (a medida) que se puedan correlacionar con las propiedades, lo que es importante para el diseño de nanomateriales con propiedades definidas (“materiales a medida”, “tailored’). Para alcanzar este objetivo se ha intentando combinar las propiedades de NPs de diversos tipos. Se ha empleado la mezcla física de las mismas, pero el resultado no ha sido satisfactorio. Se piensa que la combinación química de NPs puede ser un método más adecuado, pues permitiría combinar diferentes NPs a voluntad, con propiedades mejoradas (efecto sinérgico), con mayor control de la estructura del material, y mayor estabilidad.

En el último número de ACS Nano (2012, volumen 6, número 1) se publica un articulo (Hamers y col, ACS Nano 2012, 6, 310-318) en el que se ha diseñado una estrategia para la obtención de NPs híbridas formadas por la combinación de óxidos de wolframio (WO3) y titanio (TiO2) a través de reacciones de [3+2] de alquinos con azidas (reacción de Huisgen) que ha sido convenientemente actualizada por Sharpless (Premio Nobel de Química en 2001 por el desarrollo de métodos de síntesis asimétrica a través de reacciones de oxidación) como uno de los métodos preferido para realizar la click chemistry; y que ha sido ampliamente usada en múltiples aplicaciones, desde la biomedicina a la ciencia de los materiales.

En esta investigación, los óxidos nanoparticulados (WO3 y TiO2) son modificados con ligandos orgánicos con funcionalidad azida y alquino, respectivamente y se hacen reaccionar por el método desarrollado por Sharpless.

(De Hamers y col, ACS Nano 2012, 6, 310-318)

Los óxidos metálicos nanoparticulados, como el WO3 y el TiO2, son capaces de facilitar la separación y transferencia de carga promovidas por radiación lumínica. Esta propiedad hace que estos materiales sean muy atractivos para producir células fotovoltaicas, adecuados para fabricar paneles solares. Otra aplicación de estos nanomateriales es en fotocatálisis, es decir la aceleración de reacciones químicas por la radiación luminosa.

La posibilidad de mezclar varios tipos de óxidos metálicos nanoparticulados puede proporcionar mejores materiales para lograr estos objetivos. El trabajo descrito en ACS Nano describe la síntesis y caracterización de estos materiales y comprueban mejoras en las propiedades de los materiales híbridos en comparación con las NPs individuales, entre ellas, una eficaz transferencia de carga promovida por la luz y eficiente degradación fotoquímica del colorante azul de metileno.

Aunque las aplicaciones prácticas de esta investigación son evidentes, no hay que olvidar que es aún investigación básica; se están poniendo los cimientos para que en poco tiempo se puedan realizar aplicaciones tecnológicas. Otro aspecto importante de esta investigación es que se han desarrollado materiales con los que se pueden estudiar procesos básicos en ciencias físicas y químicas, como son entender procesos de transferencia electrónica e interacción de la luz con la materia.

Esta entrada participa en el VI Carnaval de Tecnología que aloja el blog Scientia (http://scientia1.wordpress.com/2012/01/06/vi-edicion-del-carnaval-de-la-tecnologia/) y en la XI edición del Carnaval de Química que aloja el blog La Aventura de la Ciencia (http://laaventuradelaciencia.blogspot.com/2012/01/arranca-la-xi-edicion-del-carnaval-de.html)

Bernardo Herradón García
CSIC
[email protected]

Ciclo conmemorativo del AIQ en Granada

La Universidad de Granada ha organizado cuatro seminarios y una conferencia para conmemorar el Año Internacional de la Química. Aunque los seminarios se enmarcan dentro del Máster en Química, tanto éstos como la conferencia están abiertos a la assitencia de otras personas.

Los títulos y un breve resumen de las charlas se indican a continuación. Las cuatro primeras forman parte del Máster en Química y la quinta es una conferencia de la Facultad de Química.

Los avances de la química y su impacto en la sociedad: una visión general. Esta primera charla introductoria va a exponer ejemplos diversos en los que la química juega un papel en nuestro bienestar: mejora y cuidado de nuestra salud, producción y almacenamiento de energía, impacto medioambiental de las sustancias químicas y cómo la química está logrando avances en la protección ambiental, transporte, productos de consumo, deportes, etc. Los ejemplos servirán para repasar algunos conceptos fundamentales de la química. Esta charla será el lunes 12 de diciembre a las 12:00.

¿Lo común de cada día? ¡La química! En esta charla se destacará el papel que la química tiene en un día cualquiera en nuestras vidas. Todos interaccionamos con miles de sustancias químicas a diario (aunque no nos demos cuenta). La mayoría de las sustancia químicas son beneficiosa para nuestro bienestar; aunque hay casos en los que pueden ser perjudiciales; lo que depende del uso que demos aestas sustancias químicas. Esta charla será el martes 13 de diciembre a las 13:00.

¿Natural? ¿Sintético? ¡Todo es química! Esta charla desmontará los tópicos «natural = bueno» y «sintético/artificial = malo». Se expondrán ejemplos de sustancias beneficiosas y perjudiciales, independientemente de su origen. Se destacará el papel que los productos naturales han tenido en el desarrollo de la química, especialmente de la química orgánica. También se expondrán ejemplos del uso de polímeros, materiales sintéticos que han facilitado nuestra vida desde hace décadas. La charla será el miércoles 14 de diciembre a las 11:00.

El futuro: una visión de la química. Se presentarán ejmeplos de investigaciones actuales en química que van a servir para el bienestar de la humanidad en las próximas décadas; abordando retos en salud, alimentación, energía, medio ambiente, tecnología y aspectos socilaes. Esta charla será el jueves 15 de diciembre a las 13:00.

2011: Un año de conmemoraciones químicas. Desde la antigüedad hasta nuestros días. 2011 ha sido declarado Año Internacional de la Química por la ONU. El motivo ha sido la conmemoración del centenario de la concesión del Premio Nobel de Química a Marie Curie. También durante este año se ha querido destacar el papel de las mujeres en la ciencia. En esta charla se va presentar una visión histórica del desarrollo de la química, con algunos hitos de los que en este año 2011 se cumplen fechas «redondas». También se pondrán algunos ejemplos de investigadoras relevantes en química y conmemoraciones químicas de 2012 que deben servir de «excusa» para seguir difundiendo los avances de la química en la sociedad. La conferencia será el viernes 16 de diciembre a las 12:30.

 

A continuación se adjunta el cartel anunciando el ciclo de seminarios y conferencias.

 

 

Bernardo Herradón García
CSIC
[email protected]

 

 

Química: un pilar de la ingeniería

La Real Academia de Ingeniería celebrará una sesión científica el próximo día 13 de diciembre con el título Química: un pilar de la ingeniería; en la que los profesores Vallet y Corma van a impartir sendas conferencias. A continuación se muestran los detalles del acto (la imagen se puede aumentar).

 

 

Bernardo Herradón García

CSIC

[email protected]

 

Curso de Nanotecnología

El Colegio Oficial de Físicos, la Universidad Pontificia de Comillas y el Instituto de Ciencia de Materiales de Madrid del CSIC están organizando un curso de Nanotecnología dirigido fundamentalmente a la comunidad educativa.

Toda la información se encuentra disponible en http://www.cofis.es/ofertaformativa/cofisorganiza.html#nano. El programa se puede descargar aquí.

Dicho curso tiene como finalidad acercar, a través del profesorado y utilizando las materias convencionales de perfil científico, la nanotecnología a las aulas. De esta manera se intenta que los estudiantes, como futuros ciudadanos o quizás como futuros científicos, estén al tanto de los avances en una de las ramas científico-técnicas que más van a incidir en el futuro desarrollo de nuestra sociedad.

Remitido por:

Pedro Serena

Coordinador del Curso «Introducción a la Nanotecnología: Actualidad y Perspectivas»

[email protected]

Polimerización

Debido a su extraordinaria versatilidad, los materiales polímeros están presentes en prácticamente cualquier actividad diaria y juegan un papel esencial en la vida moderna. Polímeros como los que componen los plásticos, elastómeros, tejidos pero también aquellos biopolímeros implicados en procesos biológicos esenciales como las proteínas.

Un material polímero está formado por macromoléculas, siendo éstas moléculas de relativamente alta masa molecular, cuya estructura consta esencialmente de una múltiple repetición de unidades derivadas, realmente o conceptualmente, de moléculas de masa molecular relativamente baja (definición IUPAC). Los polímeros sintéticos se suelen obtener a partir de moléculas precursoras de pequeño tamaño llamadas monómeros en el proceso denominado polimerización, mediante el cual los monómeros se unen entre sí para formar las macromoléculas. Hay dos tipos fundamentales de polimerización, mecanísticamente muy diferentes: la polimerización en cadena y la polimerización por pasos. Las características de estos procesos se encuentran explicadas de forma muy básica en los vídeos de esta página del grupo FUPOL del ICTP-CSIC (http://www.ictp.csic.es/qm/fupol):

http://www.ictp.csic.es/qm/fupol/videos_enlaces_polimerizacion.html

El video que se muestra aquí, realizado por el grupo FUPOL, muestra la colección de espectros de protón recogidos cada 2 minutos en un experimento que ha monitorizado una polimerización en cadena real real de dos compuestos acrílicos. Esta reacción de polimerización en cadena se puede representar así:



Se observa que durante la polimerización desaparecen los picos vinílicos del doble enlace monomérico (verde) que se convierten en protones de cadena del polímero (rojo). Experimento tipo array llevado a cabo por el servicio de RMN del CENQUIOR-CSIC, Madrid.

Alberto Gallardo

ICTP-CSIC

[email protected]

Escultura química

La comisión del año internacional de la química en las Islas Baleares han diseñado una macroestructura tridimensional del diamante. El diamante, pura química, tan apreciado por su simetría y belleza, es todo un símbolo de lo que la química tendría que significar para nuestra vida.

La obra ha sido realizada por el escultor Pep Fluxà con la colaboración de los profesores del Departamento de Química de la UIB, y permanecerá expuesta los próximos dos meses en la Estación Intermodal de Palma. Después, se ubicará definitivamente en el edificio Mateu Orfila i Rotger, en el campus universitario.

Durante el acto de inauguración, se hizó la lectura del poema el El cicle del carboni de Ángel Terron, poeta y profesor del Departamento de Química.

Las imágenes e información las podéis descargar aquí.

Una imagen de la escultura se muestra a continuación; así como otras imágenes sobre las formas alotrópicas del carbono.

Bernardo Herradón

IQOG-CSIC

[email protected]

Cien años de superconductividad

Este año se cumple el centenario del descubrimiento de la superconductiviad. A continuación se incluye un artículo escrito por las profesoras Mª Teresa Martín y Manuela Martín Sánchez describiendo el descubrimiento y los experimentos realizados para entender el fenómeno; así como un resumen de las investigaciones actuales sobre el tema.

Continuar leyendo

La Química en los medios de comunicación: el airbag

En la página web de RTVE «EL PORQUÉ DE LAS COSAS«, América Valenzuela explica el funcionamiento del airbag, que se basa en la descomposición de la azida sódica, un compuesto termodinámicamente estable, pero inestable cinéticamente (es decir, reactivo en ciertas condiciones) cuando se calienta, golpea o presiona, generando nitrógeno. La reacción es exotérmica (desprende calor) y en ella se genera un gas (nitrógeno) a partir de un sólido (azida sódica), aumentando considerablemente el volumen.

Las reacciones en las que se generan calor y se aumenta el volumen son la base de los explosivos. En el caso del airbag, la cantidad de azida sódica es muy pequeña y el airbag está protegido por un material químico (un polímero), el Nylon, muy resistente a la tensión; por eso, la «explosión» de azida sódica no rompe la bolsa en la que está contenida. El Nylon es uno de las sustancias químicas imprescindibles en nuestras vidas, con miles de aplicaciones. El Nylon fue sintetizado por primera vez por Wallace Carothers, uno de los más grandes genios de la Química del siglo XX.

Todos estos temas están siendo tratados en la II edición del curso de divulgación «Los avances de la Química y su impacto en la sociedad«. A continuación hay algunas imágenes de las charlas del curso en los que tratamos los temas del airbag y el Nylon.

Airbag

Carothers

Nylon_1

Nylon_2

Bernardo Herradón

IQOG-CSIC

[email protected]

La utilidad de las moléculas. El grafeno y el Premio Nobel de Física.

Esta mañana se ha anunciado la concesión del Premio Nobel de Física a André Geim y Konstantin Novoselov, profesores de la Universidad de Manchester, por la preparación y estudio de grafeno. La molécula de grafeno es un buen ejemplo de la utilidad de una sustancia química (es decir de la Química) como herramienta de trabajo para estudiar procesos físicos, aparte de su inmenso potencial práctico en electrónica molecular.

Premio Nobel de Física_2010

El grafeno es una molécula gigante formada por sólo átomos de carbono, que forman hexágonos, similares al benceno. El benceno es el prototipo de compuesto aromático, caracterizado por la existencia de 6 electrones pi. La existencia de este rasgo estructural confiere al benceno estabilidad termodinámica, reactividad química característica y propiedades eléctricas y magnéticas interesantes. La condensación y fusión de anillos hexagonales da lugar a compuestos aromáticos polianulares. Algunos ejemplos se muestran en la figura siguiente.

Aromaticos

El grafeno es una molécula con un número inmenso (prácticamente infinitos, debido a la magnitud del número de Avogadro) de anilloa aromáticos fusionados y con el grosor de sólo un átomo de carbono. Esta es una peculiaridad responsable de las propiedades del grafeno: es una molécula plana con gran superficie. Debiodo a esta características, se pensaba que el grafeno no podría prepararse de manera eficaz. Este ha sido el mérito original de la investigación del grupo de Geim y Novoselov que utilizaron un método experimental novedoso para su preparación.

Hasta el descubrimiento y caracterización de los fullerenos (de lo que se ha cumplido hace unas semanas el 25 aniversario), el carbono se presentaba en dos formas alotrópicas: el grafito y el diamante. Las dos sustancias tienen la misma composición: carbono puro; pero que tienen propiedades físicas totalmente dispares. Mientras que el diamante es transparente, aislante eléctrico y muy duro; el grafito es negro, conduce la electricidad y blando, siendo fácilmente exfoliable. Estas diferencias son debidas a la distinta ordenación de los átomos de carbono en la estructura cristalina. Los átomos de carbono en el diamante están formando estructuras muy compactas, dónde cada átomo de carbono está unido a otros tres átomos con geometría tetraédrica. En esta estructura no hay electrones pi, con mayor movilidad que los sigma, y el diamante no conduce la electricidad. Por otro lado, el grafito está formado por capas de átomos de carbono formando estructuras hexagonales fusionadas con electrones pi con alta movilidad, que son los responsables de la conductividad eléctrica del grafito. Además, la gran cantidad de enlaces conjugados en las capas de carbono es responsable de su color negro. Las capas de grafito están unidas a través interacciones no-covalentes débiles, por dónde el grafito puede ser exfoliado. Si el grafito se muele en un polvo fino, resulta el carbón activo de estructura amorfa que tiene mucha superficie por unidad de masa y es un excelente adsorbente de sustancias químicas, usándose en una de las primeras etapas de la purificación de agua.

Grafito_Diamante_Carbon Activo

La figura siguiente muestra la relación entre el grafito, el grafeno, los nanotubos y los fullerenos.

Grafito_Grafeno

Cada una de las capas carbonadas que forman el grafito es una molécula de grafeno. La obtención de una monocapa mejora considerablemente las propiedades del grafito. El grafeno es mejor conductor de la electricidad que el cobre, siendo mucho más ligero. El grafeno es transparente, muy duro, excelente conductor del calor, disipándolo eficazmente. Todas estas propiedades hacen de él un material para aplicaciones en electrónica molecular. Investigaciones futuras se enfocarán a la modificación química del grafeno con el objetivo de mejorar sus propiedades.

Como dato curioso, Geim recibió el Premio Ig Nobel en Física en el año 2000. Lo compartió con Michael Berry «por usar imanes para conseguir que las ranas leviten» (citación de la consecución del Ig Nobel). Aunque estos premios se conceden por investigaciones que al menos promueven una sonrisa, son importantes para observar como los campos magnéticos intensos afectan a las sustancias aparentemente no-magnética, debido a una pequeña respuesta diamagnética que, a nivel atómico y molecular, compensa la fuerza de la gravedad. Este tipo de experimentos sirven para modelizar entornos de gravedad cero. En 2001, Geim publicó un artículo (Physica B, 2001, 294-295, 736) en el que el coautor era su hamster.

Dentro de unas horas se anunciará la concesión del Premio Nobel de Química. Algunos merecedores: Whitesides, Schreiber, Schultz, Eschenmoser, Mukaiyama, Somorjai, Danishefsky, Marks, Parr, von Schleyer, Ziegler, Stoddart, Crabtree, Fréchet, Karplus, Lippard, Zare.

De las formas alotrópicas del carbono y su utilidad (y de otras utilidades de la Química, así como de su relación con otras ciencias) se hablará en la charla La Química: De “entre la Física y la Biología” a “entre la Biomedicina y la Ciencia de los Materiales”. Oportunidades de investigación en Química dentro del curso de divulgación Los Avances de la Química y su Impacto en la Sociedad (jueves 7 de octubre en la sede del IQOG).

Bernard0 Herradón

IQOG-CSIC

[email protected]