Archivado con la Etiqueta: Física

Conmemorando a Max Born en el 135º aniversario de su nacimiento

Hoy se cumple el 135º aniversario del nacimiento de Max Born (1882-1970), que recibió el Premio Nobel de Física en 1954 (compartido con Walter Bothe), cuando acababa de retirarse de su cátedra de la Universidad de Edimburgo. La biografía y el resumen del trabajo científico de Born se puede encontrar en multitud de sitios en la web. Entre las contribuciones de Born a la Ciencia, cabe destacar sus investigaciones teóricas sobre la dinámica de los sistemas cristalinos, óptica y mecánica cuántica. Se ha afirmado que “en ningún lugar puede hacerse Física sin topar, de forma directa o indirecta, con el nombre de Max Born.

born_postcard

Aunque afirmaba modestamente que sus conocimientos de Química se limitaban al cloruro de sodio; sus investigaciones también han influido en la Química. Aparte de su aportación a la Mecánica cuántica, que son los fundamentos de la Química; también propuso la aproximación adiabática o de Born-Oppenheimer que facilita la resolución aproximada de las ecuación de ondas para sistemas moleculares, o el ciclo de Born-Haber que permite el cálculo de entalpías de reacciones químicas usando como base la Física teórica, este método se aplicó originalmente a la energía de la red cristalina, que no se puede obtener experimental. Además, Born estaba convencido que la Mecánica cuántica debe ser compatible con el concepto de estructura química.

Continuar leyendo

La Química: la ciencia de lo cotidiano y de las interacciones electromagnéticas

Originalmente solo existía una Ciencia Natural, que se denominaba . Con la adquisición de nuevos conocimientos, ésta se dividió en diversas ramas, dando lugar a las cuatro ciencias naturales clásicas: Física, Química, Biología y Geología. Desarrollos posteriores de las Ciencias Naturales clásicas dieron lugar a nuevas especialidades [Bioquímica, Biofísica, Geoquímica, Geofísica, Físicoquímica (o Química Física), Paleontología] como híbridos de las anteriores. Desde hace unos años, la especialización se está acentuando llegando a lo que considero tercera y cuarta generaciones de Ciencias naturales.

Diapositiva1 Continuar leyendo

Propuestas para la enseñanza de la química

 

A continuación se recoge la DECLARACIÓN DEL VII ENCUENTRO NACIONAL de PROFESORES de QUÍMICA, que tuvo lugar en abril de 2012 , durante la celebración de la XXV Olimpiada Nacional de Química

Durante el VII Encuentro Nacional de Profesores de Química celebrado el 28 de abril en el Escorial, los profesores analizaron algunos aspectos que se podrían mejorar en relación a la estructura del actual sistema educativo, en general, y de la enseñanza de la química.

En todos los países nuestro entorno se considera que la formación científica y técnica es esencial para el progreso y el desarrollo de la sociedad, así mismo la actual Ley Educativa española reconoce la necesidad de que todos los alumnos adquieran una cultura básica en ciencia y tecnología. La formación de buenos profesionales en los sectores de la ciencia y de la tecnología que nos permita ser competitivos y que asegure el bienestar de nuestra sociedad depende, en gran medida, de la formación inicial con la que los estudiantes acceden a los estudios superiores.

En el Informe de la Ponencia del Senado sobre la situación de las enseñanzas científicas en la Educación Secundaria en el seno de la Comisión de Educación, Cultura y Deporte, aprobado el 13 de mayo de 2003 (BOCG de 22 de mayo de 2003), se recogen los principales defectos en la estructura del actual sistema educativo, entre los cuales cabe destacar:

a) La escasez de horas dedicadas a la enseñanza de las materias científicas, en relación con los sistemas educativos de países de nuestro entorno.

b) El enfoque u orientación de ciencia integrada, de corte anglosajón, dado a las materias científicas en 1º y 2º de la ESO (integrando contenidos de Biología, Geología, Física y Química), que en España, como en otros países europeos, ha fracasado principalmente por la falta de formación de profesorado en esa concepción o visión de la ciencia. Este modelo, ha permitido que los contenidos de Química (y de Física) se estén impartiendo por un profesorado no especialista en estas disciplinas y que, en la mayoría de los centros, desde la implantación de la LOGSE, los profesores de Física y Química hayan ido perdiendo el control, la programación y la impartición de las materias de Ciencias de la Naturaleza en 1º y 2º ESO.

c) El tradicional diseño de las materias científicas en el bachillerato, que lleva a impartir la Física y la Química como una misma asignatura en el primer curso de bachillerato, no favorece el desarrollo curricular de cada una de ellas.

d) La escasa (o inexistente) preparación experimental que reciben los alumnos, comparada con la de otros países europeos, que influye en el proceso de enseñanza-aprendizaje de los conceptos y en un escaso interés por los estudios científicos y tecnológicos.

Con el fin de cambiar esta tendencia, se hace las siguientes propuestas para la mejora de la formación científica:

1. Modificar los currículos de Ciencias de la Naturaleza en los dos primeros cursos de la ESO, de modo que en 1º de la ESO se estudien los contenidos de Biología y Geología y en 2º de la ESO los contenidos de Física y Química. Este segundo curso impartido por los profesores especialistas en Física y Química o, en su defecto, bajo el control y programación del departamento de Física y Química.

2. Cambiar la estructura del 3º curso de la ESO, para que los alumnos, al término de la ESO, tengan unos mínimos conocimientos científicos y una formación básica de carácter científico. Para ello, y teniendo en cuenta que en dicho curso tienen lugar las pruebas PISA y que en las mismas tienen una fuerte importancia los conceptos científicos, se propone una distribución horaria de 3 horas semanales para cada una de las dos materias, Física y Química y Biología y Geología.

3. Introducir la obligatoriedad de cursar Física y Química en el primer curso del futuro bachillerato (actual 4º de la ESO) para los alumnos orientados a los estudios de carácter científico, técnico y de la salud y para aquellos que deseen estudiar una formación profesional relacionada con la ciencia y la técnica, con una carga lectiva de cuatro periodos semanales.

4. Abordar la Física y la Química como materias diferenciadas o separadas en los dos últimos cursos del futuro bachillerato.

5. Considerar, tanto la Física como la Química, materias obligatorias en el futuro 2º y 3º de Bachillerato para los itinerarios de la modalidad de Ciencia y Tecnología con la carga lectiva actual, según rigen en las materias de las Ramas de Conocimiento.

6. Introducir explícitamente en los currículos de las asignaturas las actividades experimentales (laboratorios), adecuadas a cada curso y nivel, que deban realizar los alumnos, con especificación de la dedicación horaria y de los criterios de evaluación.

7. Incluir la necesaria coordinación entre las materias de Matemáticas, Física, Química, Biología y Tecnologías, con objeto de asegurar que los alumnos reciban los conocimientos previos, en cada curso, para comprender los conceptos desarrollados en las diferentes materias.

8. Ajustar los programas al tiempo disponible en cada materia, con objeto de que se puedan abordar los conceptos básicos adecuadamente, que se adquieran las estrategias de resolución de problemas y conozcan las técnicas experimentales propias de la Química con seguridad. En la situación actual ocurre todo lo contrario, y ello conduce a una sensación de frustración y al rechazo de la Química, por crearse artificialmente la impresión de que es una asignatura difícil o que se estudia siempre lo mismo.

9. Incluir, en la asignatura Ciencias para el Mundo Contemporáneo, temas relativos a la aportación de la Química al avance social, económico y cultural de nuestra sociedad, con una extensión similar a la de otras ramas del conocimiento científico, y garantizar que dicha materia sea impartida por profesores graduados en carreras científicas.

10. Favorecer la participación activa de las Facultades de Química en la formación didáctica del profesorado en el nivel de Postgrado.

La consideración de estos aspectos educativos en la futura ley de educación mejoraría significativamente la formación de nuestros estudiantes y los acercaría al nivel necesario para afrontar con éxito los estudios de Educación Superior y la adquisición de las necesarias competencias dentro del proceso educativo de convergencia europea y de la imparable globalización que se está extendiendo, en todos los ámbitos, al mundo entero.

Asimismo, señalar que los cambios que se proponen para la mejora de la formación científica de los estudiantes de Educación Secundaria Obligatoria y de Bachillerato que se propone no son en detrimento de las denominadas materias humanísticas, sino, muy al contrario, de una progresión conjunta del conocimiento que beneficie a los alumnos al hacer que se comprendan y complementen mejor, pero que requiere una reorganización de itinerarios y contenidos. Es cierto, que en el denominado Bachillerato de Excelencia o en el Bachillerato Internacional, que se imparten en un reducido número de centros escolares, se tiene en cuenta algunas de estas propuestas, pero sería muy importante extenderlo a toda la población escolar con unos planteamientos que, aunque no sean tan ambiciosos como los de estos dos bachilleratos minoritarios, si permitan profundizar en el conocimiento científico y tecnológico.

El documento original se puede descargar aquí.

 

 

 

 

El futuro: una visión desde la Química

Charla en la Universidad de Girona el día 21 de julio de 2011. Se debatió el papel actual de la química, su relación con otras ciencias y su importancia futura en aspectos como la producción de energía, la conservación medioambiental, alimentos, salud, materiales tecnológicos y aspectos sociales.

Las conclusiones son:

1) No sabemos como será el futuro.

2) No sabemos comos seré el futuro de la química.

3) Lo que si sabemos es que no hay futuro sin la química.

Copia de la presentación en PDF.

futuro_vision-desde-la-quimicaBernardo Herradón-G.

CSIC

[email protected]

Marie Curie (1867-1934)

Hoy se cumplen 77 años del fallecimiento de Marie Curie a causa de una anemia perniciosa probablemente provocada por los muchos años de trabajo con material radiactivo. Marie Curie vivió una vida intesna. Aparte de su magnífico, admirable y ejemplar labor investigadora, fue una persona comprometida con los derechos humanos, la paz y la libertad. Estas virtudes las transmitió a sus hijas Irene (Premio Nobel de Química en 1935, compartido con su marido Frédéric Joliot-Curie) y Eva (su albacea testamentario y biógrafa).

Continuar leyendo

Cinco ecuaciones que cambiaron el mundo

Libro de divulgación científica muy entretenido. Describe de manera sencilla cinco ecuaciones fundamentales en la historia de la ciencia, describiendo pasajes de la obra y el entorno científico de los protagonistas de la historia.

Las cinco ecuaciones son:

1) Ley de la Gravitación Universal de Isaac Newton.

2) Ley de la Presión Hidrodinámica de Daniel Bernoulli.

3) Ley de la Inducción Electromagnética de Michael Faraday.

4) La Segunda Ley de la Termodinámica, principalmente debida a Rudolf Clausius.

5) La Teoría de la Relatividad Espacial de Albert Einstein.

Subtítulo: El poder y la oculta belleza de las matemáticas.

Autor: Michael Guillen

Debolsillo editoral

2010

Sitio web.

Bernardo Herradón-G

CSIC

[email protected]

Marie Curie

2011: Año Internacional de la Química declarado por la ONU y gestionado por la UNESCO y la IUPAC.

El motivo: la concesión del Premio Nobel de Química a Marie Curie. Su segundo Premio Nobel, tras el primero en Física en 1903. En principio, la Academia Sueca sólo había propuesto a Pierre Curie y a Henri Becquerel para el premio. Pero Pierre se negó a aceptarlo si no se reconocía el trabajo de su esposa Marie. El primer Premio Nobel fue por las investigaciones en radioactividad y el segundo por el aislamiento y caracterización del radio y polonio, dos elementos químicos radioactivos.

Por muchas razones (inteligencia, tenacidad, esfuerzo, se pionera en muchas cosas, ….) Marie Curie es una de las figuras más relevantes de la historia de la ciencia. En este año se ha escrito mucho sobre ella. Yo recomiendo que se lea la biografía que su hija (y albacea), Eva Curie, escribió. El título, sencillo, Madame Curie. El libro se puede puede encontrar en INTERNET ARCHIVE.

Miguel Carreras (Ciencia Viva) acaba de publicar un excelente artículo sobre Marie Curie en el suplemento IDEAR del PERIÓDICO DE ARAGÓN. Aparte de algunos hechos de la vida y obra de Marie Curie, el autor hace unos breves comentarios sobre las películas sobre la gran científica; que aunque no sean obras maestras del cine, pueden servir para recordar algunos pasaje de la vida de Marie Curie.

Hace un par de semanas, me invitaron al acto de graduación de bachillerato del IES Antonio Gaudí (Coslada, Madrid). Entre los diversas temas que traté que pudieran estimular a los jóvenes, hice un breve resumen de los hitos científicos y personales de la vida de Marie Curie. Entre estos últimos, destaqué la modestia personal, la labor humanitaria, su lucha por el bienestar de la humanidad; actitudes que transmitió a sus hijas. La copia de las diapositivas se pueden descargar aquí.

 

 

Bernardo Herradón-G.

CSIC

[email protected]

Cien años de superconductividad

Este año se cumple el centenario del descubrimiento de la superconductiviad. A continuación se incluye un artículo escrito por las profesoras Mª Teresa Martín y Manuela Martín Sánchez describiendo el descubrimiento y los experimentos realizados para entender el fenómeno; así como un resumen de las investigaciones actuales sobre el tema.

Continuar leyendo

Premio «Salvador Senent»

El Grupo de Didáctica e Historia de la Física y la Química de las Reales Sociedades Españolas de Física y Química convoca la 3ª Edición del premio “SALVADOR SENENT”, patrocinado por el Foro de Industria Nuclear Española, consistente en 800 € y un diploma acreditativo.

Se podrá presentar cualquier trabajo científico especializado, de revisión o de carácter divulgativo, que esté relacionado con la Didáctica o con la Historia de la Física o de la Química, valorándose su rigurosidad y originalidad.

Más información.

Premio “SALVADOR SENENT”

GRUPO DE DIDÁCTICA E HISTORIA DE LAS RR.SS.EE. DE FÍSICA Y DEQUÍMICA

 

El Grupo de Didáctica e Historia de la Física y la Química de las Reales Sociedades Españolas de Física y Química convoca la 3ª Edición del premio “SALVADOR SENENT”, patrocinado por el Foro de Industria Nuclear Española, consistente en 800 € y un diploma acreditativo. 

 

Se podrá presentar cualquier trabajo científico especializado, de revisión o de carácter divulgativo, que esté relacionado con la Didáctica o con la Historia de la Física o de la Química, valorándose su rigurosidad y originalidad.Los trabajos se presentarán siguiendo un formato acorde a las normas de publicación de la Revista Anales de Química, y que se recogen en la dirección Web:

http://www.rseq.org/manuscritos.php

En dicha dirección, donde se incluyen normas de publicación, artículo modelo y plantilla de artículo, se indican la extensión máxima y el formato (de texto, tablas, figuras y bibliografía) establecido.

Los trabajos deben remitirse, antes del 30 de marzo de 2011, por correo electrónico a cualquiera de las siguientes direcciones:

[email protected]

[email protected]

También puede enviarse por correo ordinario a la dirección:

Grupo de Didáctica e Historia de la Física y la Química,

Real Sociedad Española de de Química, Facultad de Química,

Universidad Complutense de Madrid, 28040 Madrid

Se remitirá acuse de recibo del trabajo.

El trabajo ha de ser inédito, no publicado anteriormente ni en proceso de publicación. No obstante, los manuscritos que se sometan al proceso de publicación de la revista Anales de Química a partir del 1 de marzo de 2010 pueden también presentarse al Premio, siguiendo el procedimiento señalado anteriormente e indicando en la solicitud que el texto se ha remitido también a la revista.

El jurado del premio está integrado por los miembros de la Junta Directiva del Grupo especializado de Didáctica e Historia de la Física y la Química y un representante del Foro de la Industria Nuclear Española que no podrán optar al premio, y será entregado en la Bienal de Química que se celebrará en Valencia entre el 24 y el 28 de Julio de 2011.

 

Manuela Martín Sánchez

Presidenta del Grupo Especializado de Didáctica e Historia de la Física y la Química (RSEF y RSEQ)

[email protected]

La utilidad de las moléculas. El grafeno y el Premio Nobel de Física.

Esta mañana se ha anunciado la concesión del Premio Nobel de Física a André Geim y Konstantin Novoselov, profesores de la Universidad de Manchester, por la preparación y estudio de grafeno. La molécula de grafeno es un buen ejemplo de la utilidad de una sustancia química (es decir de la Química) como herramienta de trabajo para estudiar procesos físicos, aparte de su inmenso potencial práctico en electrónica molecular.

Premio Nobel de Física_2010

El grafeno es una molécula gigante formada por sólo átomos de carbono, que forman hexágonos, similares al benceno. El benceno es el prototipo de compuesto aromático, caracterizado por la existencia de 6 electrones pi. La existencia de este rasgo estructural confiere al benceno estabilidad termodinámica, reactividad química característica y propiedades eléctricas y magnéticas interesantes. La condensación y fusión de anillos hexagonales da lugar a compuestos aromáticos polianulares. Algunos ejemplos se muestran en la figura siguiente.

Aromaticos

El grafeno es una molécula con un número inmenso (prácticamente infinitos, debido a la magnitud del número de Avogadro) de anilloa aromáticos fusionados y con el grosor de sólo un átomo de carbono. Esta es una peculiaridad responsable de las propiedades del grafeno: es una molécula plana con gran superficie. Debiodo a esta características, se pensaba que el grafeno no podría prepararse de manera eficaz. Este ha sido el mérito original de la investigación del grupo de Geim y Novoselov que utilizaron un método experimental novedoso para su preparación.

Hasta el descubrimiento y caracterización de los fullerenos (de lo que se ha cumplido hace unas semanas el 25 aniversario), el carbono se presentaba en dos formas alotrópicas: el grafito y el diamante. Las dos sustancias tienen la misma composición: carbono puro; pero que tienen propiedades físicas totalmente dispares. Mientras que el diamante es transparente, aislante eléctrico y muy duro; el grafito es negro, conduce la electricidad y blando, siendo fácilmente exfoliable. Estas diferencias son debidas a la distinta ordenación de los átomos de carbono en la estructura cristalina. Los átomos de carbono en el diamante están formando estructuras muy compactas, dónde cada átomo de carbono está unido a otros tres átomos con geometría tetraédrica. En esta estructura no hay electrones pi, con mayor movilidad que los sigma, y el diamante no conduce la electricidad. Por otro lado, el grafito está formado por capas de átomos de carbono formando estructuras hexagonales fusionadas con electrones pi con alta movilidad, que son los responsables de la conductividad eléctrica del grafito. Además, la gran cantidad de enlaces conjugados en las capas de carbono es responsable de su color negro. Las capas de grafito están unidas a través interacciones no-covalentes débiles, por dónde el grafito puede ser exfoliado. Si el grafito se muele en un polvo fino, resulta el carbón activo de estructura amorfa que tiene mucha superficie por unidad de masa y es un excelente adsorbente de sustancias químicas, usándose en una de las primeras etapas de la purificación de agua.

Grafito_Diamante_Carbon Activo

La figura siguiente muestra la relación entre el grafito, el grafeno, los nanotubos y los fullerenos.

Grafito_Grafeno

Cada una de las capas carbonadas que forman el grafito es una molécula de grafeno. La obtención de una monocapa mejora considerablemente las propiedades del grafito. El grafeno es mejor conductor de la electricidad que el cobre, siendo mucho más ligero. El grafeno es transparente, muy duro, excelente conductor del calor, disipándolo eficazmente. Todas estas propiedades hacen de él un material para aplicaciones en electrónica molecular. Investigaciones futuras se enfocarán a la modificación química del grafeno con el objetivo de mejorar sus propiedades.

Como dato curioso, Geim recibió el Premio Ig Nobel en Física en el año 2000. Lo compartió con Michael Berry «por usar imanes para conseguir que las ranas leviten» (citación de la consecución del Ig Nobel). Aunque estos premios se conceden por investigaciones que al menos promueven una sonrisa, son importantes para observar como los campos magnéticos intensos afectan a las sustancias aparentemente no-magnética, debido a una pequeña respuesta diamagnética que, a nivel atómico y molecular, compensa la fuerza de la gravedad. Este tipo de experimentos sirven para modelizar entornos de gravedad cero. En 2001, Geim publicó un artículo (Physica B, 2001, 294-295, 736) en el que el coautor era su hamster.

Dentro de unas horas se anunciará la concesión del Premio Nobel de Química. Algunos merecedores: Whitesides, Schreiber, Schultz, Eschenmoser, Mukaiyama, Somorjai, Danishefsky, Marks, Parr, von Schleyer, Ziegler, Stoddart, Crabtree, Fréchet, Karplus, Lippard, Zare.

De las formas alotrópicas del carbono y su utilidad (y de otras utilidades de la Química, así como de su relación con otras ciencias) se hablará en la charla La Química: De “entre la Física y la Biología” a “entre la Biomedicina y la Ciencia de los Materiales”. Oportunidades de investigación en Química dentro del curso de divulgación Los Avances de la Química y su Impacto en la Sociedad (jueves 7 de octubre en la sede del IQOG).

Bernard0 Herradón

IQOG-CSIC

[email protected]

Los Premios Nobel olvidados y tardíos. Max Born.

Ya se están empezando a conocer los Premios Nobel de este año (los de Física y Química se anunciarán los días 5 y 6, repectivamente). En ese momento se empezarán a discutir sobre los galardonados, sobre los pronósticos fallidos y se recordarán a los científicos que, mereciéndolo, no lo recibieron y porqué no fueron galardonados. En algunos casos estos “olvidos” fueron intencionados, en otros no intencionados y en, muchos de ellos, para cumplir los deseos de Alfred Nobel: premiar como máximo a 3 científicos por año y especialidad y que estuvieran vivos en el momento del anuncio de la concesión.

Es justo recordar, aunque sólo sea nombrándolos, a algunos de estos olvidados de los Premios Nobel: Gandhi (Paz), Meitner o Slater (Física), Avery o Moncada (Medicina) y Mendeleev, Lewis, Eyring, Ingold, Heitler, London o Carothers (Química). Algunos de estos químicos serán objeto de próximos posts en este blog.

También son interesantes los casos de los científicos que recibieron el Premio Nobel al final de sus vidas, algunos incluso cuando ya prácticamente se habían retirado de la carrera científica o la investigación, por la que fueron galardonados, la habían hecho muchos años antes. Dos químicos muy relevantes, Georg Wittig (1898-1987) y Herbert C. Brown (1912-2004), lo recibieron en 1979 cuando posiblemente lo merecieron muchos antes por sus trabajos de aplicaciones sintéticas de compuestos de fósforo y boro, respectivamente.

Quiero dedicar el resto del artículo al físico Max Born (1882-1970), que recibió el Premio Nobel de Física en 1954 (compartido con Walter Bothe), cuando acababa de retirarse de su cátedra de la Universidad de Edimburgo. La biografía y el resumen del trabajo científico de Born se puede encontrar en multitud de sitios en la web. Entre las contribuciones de Born a la Ciencia, cabe destacar sus investigaciones teóricas sobre la dinámica de los sistemas cristalinos, óptica y mecánica cuántica. Se ha afirmado que “en ningún lugar puede hacerse Física sin topar, de forma directa o indirecta, con el nombre de Max Born.

born_postcard

Aunque afirmaba modestamente que sus conocimientos de Química se limitaban al cloruro sódico; sus investigaciones también han influido en la Química. Aparte de su aportación a la Mecánica cuántica, que son los fundamentos de la Química; también propuso la aproximación adiabática o de Born-Oppenheimer que facilita la resolución aproximada de las ecuación de ondas para sistemas moleculares, o el ciclo de Born-Haber que permite el cálculo de entalpías de reacciones químicas usando como base la Física teórica, este método se aplicó originalmente a la energía de la red cristalina, que no se puede obtener experimental. Además, Born estaba convencido que la Mecánica cuántica debe ser compatible con el concepto de estructura química.

Born recibió el Premio Nobel por su contribución a la Mecánica Cuántica, especialmente por su interpretación estadística de la función de onda. Aunque esta justificación de la Fundación Nobel para concederle el Premio es justa, es insuficiente; pues Max Born debe considerarse como el auténtico padre (quizás compartido con Niels Bohr) de la Mecánica Cuántica (él acuño el término, aunque esto sea anecdótico). Y es injusto que le galardonasen en 1954 cuando, sin duda, lo mereció al menos 20 años antes (en la época de Heissenberg, Schrödinger y Dirac).

Además tenía unas virtudes dignas de elogio como científico y ser humano: humilde, generoso, conciencia social y luchador por la paz.

Acabo de leer algunos ensayos escritos por Born a lo largo de su vida. Los ensayos están recogidos en los libros Ciencia y Conciencia en la Era Atómica (también contiene ensayos escritos por su esposa, Hedwig Born, una pacifista activa durante la Guerra Fría) y Physics in my Generation. Este segundo libro, aunque escrito en un lenguaje asequible (y prácticamente sin fórmulas) está más orientado a especialistas en Física.

El libro Ciencia y Conciencia en la Era Atómica tiene varios ensayos autobiográficos (escritos en diversas épocas de su vida), un ensayo excepcionalmente ameno sobre su investigación en la dinámica de las redes cristalinas, su conferencia de aceptación del Premio Nobel, un artículo sobre Einstein a través de su correspondencia científica y un ensayo sobre la amenaza atómica (muy presente en aquellos años).

En este último artículo, aunque toma como tema del mismo la amenaza atómica; va más allá, dando muestras de una calidad humana impresionante con reflexiones interesantes sobre ciudadanía (¡la anhelada relación entre Ciencia y ciudadanía!) y política.

La formación universitaria de Born fue en Matemáticas en Götinga, dónde estudió y fue colaborador (ayudante de docencia) de cuatro de los más grandes de la época: Klein, Hilbert, Minkowski y Runge. Aunque hubiese podido hacer una carrera brillante en Matemáticas, pensó que no estaría a la altura de sus maestros y prefirió dedicar sus esfuerzos a la Física teórica. Con los cuatro maestros matemáticos (quizás con Klein menos, como reconoce Born, pues Klein era menos asequible) mantuvo relaciones excelentes toda su vida.

En sus escritos defiende su filosofía científica (los ensayos son buenos ejemplos de Filosofía de la Ciencia) de trabajar en varios temas, criticando la especialización excesiva a la que se estaba llegando en la Ciencia (incluso en aquellos años 1950s, ¡si viviese ahora!).

Su actitud frente a los colegas es digna de elogio. Siempre favoreció a los jóvenes investigadores, reconociendo su talento. Su grupo de investigación (primero en Frankfurt y Götinga, hasta que el nazismo le obligó a emigrar, y luego en Edimburgo) fue un vivero o sitio de acogida de algunos de los más importantes científicos del siglo XX. Por citar los nombres más relevantes; tuvo como ayudantes a O. Stern (Premio Nobel), W. Pauli (Premio Nobel), W. Heissenberg (Premio Nobel), E. Hückel, F. Hund, W. Heitler; como a doctorandos a P. Jordan, M. Delbrück, J. R. Oppenheimer (del que no le gustó que posteriormente participase en el Proyecto Manhattan de preparación de la bomba atómica), M. Göppert-Mayer (Premio Nobel); como colaboradores a A. Landé, V. Fock, E. Hyllerass; y como anfitrión de J. E. Lennard-Jones, E. U. Condon, P. Dirac (Premio Nobel), E. Fermi (Premio Nobel), J. E. Tamm (Premio Nobel), N. Mott, F. London, L. Pauling (Premio Nobel), J. Von Neumann, E. Teller y E. P. Wigner (Premio Nobel). ¡Difícil encontrar una cantera mejor!

La relación con sus colaboradores fue especial. Califica a sus dos primeros ayudantes, Wolfgang Pauli y Werner Heissenberg, “como los más aplicados y geniales que uno puede imaginar”. La relación con este último fue especial, con gran generosidad. Cuando Heissenberg escribió el artículo (Z. Phys. 1925, 34, 879) que dio comienzo a la Mecánica cuántica trabajaba en el grupo de Born, este lo revisó y seguro que hizo aportaciones destacables al mismo; sin embargo no exigió firmarlo como autor (¿nos imaginamos esta situación actualmente? ¿qué un “jefe” decline figurar como autor de un artículo de un colaborador?). Posteriormente al envío a publicar de este artículo de Heissenberg, Born en colaboración con su discípulo Jordan desarrolló un formalismo matemático (basado en el álgebra de matrices, que dominaba por su pasado “matemático” y que no era muy común en la época y menos entre físicos) que hacía más asequible la mecánica cuántica, dando lugar dos artículos fundamentales (uno de ellos de Born y Jordan, Z. Phys. 1925, 34, 858; y el otro el famoso Drei-Männer-Arbeit, Born, Heissenberg y Jordan, Z. Phys. 1926, 35, 557).

¿Por qué tardó tanto el Comité Nobel en conceder el Premio Nobel a Born? Muy posiblemente fue debido a que físicos muy relevantes, fundadores de la Física cuántica, como Planck, Schrödinger, de Broglie y Einstein no creían en la Naturaleza estadística, no determinista, que se deducía de la Mecánica cuántica y de la que Born fue el máximo exponente y defensor. Hay que remarcar que fue Born el científico que interpretó el cuadrado (o conjugado complejo) de la función de ondas de Schródinger como una probabilidad, tan familiar para todos los físicos y químicos actualmente, pero revolucionario cuando lo propuso en 1926, y que daba sentido físico al concepto matemático de la función de onda introducido por Schrödinger en su versión ondulatoria de la Mecánica cuántica.

Born mantuvo una relación muy especial con Einstein. Fueron amigos toda la vida, a pesar de las discrepancias científicas sobre la Naturaleza descritas por la Mecánica cuántica. Como es bien sabido, y a pesar de ser uno de los precursores de la Mecánica cuántica. Einstein no creía en que la Naturaleza estuviese regida por leyes estadísticas. Born fue el receptor de la famosa frase “Dios no juega a los dados” escrita por Einstein. Born mantuvo toda su vida una admiración inmensa por Einstein al que consideraba un maestro, reconociéndole una influencia inmensa en su trabajo. Born fue un activo difusor de la Teoría de la Relatividad (plasmada en diversos artículos y en el libro Einstein’s Theory of Relativity), cuyo desarrollo consideraba genial y como él mismo afirmó, “decidió no trabajar en la Teoría de la Relatividad porque nunca podría llegar a la aportación genial de Einstein”.

Born_einstein_relatividad

En definitiva, Max Born ha sido uno de los más grandes científicos de la historia y también una persona digna de elogio por su compromiso ciudadano.

Bernardo Herradón

IQOG-CSIC

[email protected]

Sobre la molécula más importante. Detección de agua.

En un artículo reciente, Gómez et al. (Instituto de Acústica del CSIC y Centro de Investigación y Tecnología Agroalimentaria de Aragón) han descrito un método no-invasivo y sin contacto para determinar el contenido y el estado del agua en las hojas de las plantas. Esta investigación podría tener aplicaciones prácticas y puede ser una herramienta útil en la investigación de fenómenos dónde el agua tenga un papel fundamental.

Continuar leyendo

Los límites de la Química. Parte 2: la Química entre la Física y la Biología


La Química entre la Física y la Biología”. Así comienza el “Libro de la Química Moderna” y el prefacio al mismo (por Manfred Eigen, Premio Nobel en 1967) y tiene dos connotaciones. Por un lado, dai dea de la centralidad de la Química como Ciencia y, por otro lado, la Química se pone a la altura de la Biología y de la Física, que tienen dos grandes objetivos: entender la vida y el universo. En este “post” uso esta frase para reflexionar sobre los límites y fronteras de la Química, que espero desarrollare n posteriores artículos.

Continuar leyendo

Los límites de la Química (y de otras Ciencias)-Parte 1

Originalmente solo existía una Ciencia Natural. Con la adquisición de nuevos conocimientos, ésta se dividió en diversas ramas, dando lugar a las cuatro ciencias naturales clásicas: Física, Química, Biología y Geología. Desarrollos posteriores de las Ciencias Naturales clásicas dieron lugar a nuevas especialidades [Bioquímica, Biofísica, Geoquímica, Geofísica, Físicoquímica (o Química Física), Paleontología] como híbridos de las anteriores. Desde hace unos años, la especialización se está acentuando llegando a lo que considero tercera y cuarta generaciones de Ciencias naturales.

Continuar leyendo