Archivado con la Etiqueta: Historia de la ciencia

Premio “SALVADOR SENENT”

GRUPO DE DIDÁCTICA E HISTORIA DE LAS RR.SS.EE. DE FÍSICA Y DEQUÍMICA

 

El Grupo de Didáctica e Historia de la Física y la Química de las Reales Sociedades Españolas de Física y Química convoca la 3ª Edición del premio “SALVADOR SENENT”, patrocinado por el Foro de Industria Nuclear Española, consistente en 800 € y un diploma acreditativo. 

 

Se podrá presentar cualquier trabajo científico especializado, de revisión o de carácter divulgativo, que esté relacionado con la Didáctica o con la Historia de la Física o de la Química, valorándose su rigurosidad y originalidad.Los trabajos se presentarán siguiendo un formato acorde a las normas de publicación de la Revista Anales de Química, y que se recogen en la dirección Web:

http://www.rseq.org/manuscritos.php

En dicha dirección, donde se incluyen normas de publicación, artículo modelo y plantilla de artículo, se indican la extensión máxima y el formato (de texto, tablas, figuras y bibliografía) establecido.

Los trabajos deben remitirse, antes del 30 de marzo de 2011, por correo electrónico a cualquiera de las siguientes direcciones:

[email protected]

[email protected]

También puede enviarse por correo ordinario a la dirección:

Grupo de Didáctica e Historia de la Física y la Química,

Real Sociedad Española de de Química, Facultad de Química,

Universidad Complutense de Madrid, 28040 Madrid

Se remitirá acuse de recibo del trabajo.

El trabajo ha de ser inédito, no publicado anteriormente ni en proceso de publicación. No obstante, los manuscritos que se sometan al proceso de publicación de la revista Anales de Química a partir del 1 de marzo de 2010 pueden también presentarse al Premio, siguiendo el procedimiento señalado anteriormente e indicando en la solicitud que el texto se ha remitido también a la revista.

El jurado del premio está integrado por los miembros de la Junta Directiva del Grupo especializado de Didáctica e Historia de la Física y la Química y un representante del Foro de la Industria Nuclear Española que no podrán optar al premio, y será entregado en la Bienal de Química que se celebrará en Valencia entre el 24 y el 28 de Julio de 2011.

 

Manuela Martín Sánchez

Presidenta del Grupo Especializado de Didáctica e Historia de la Física y la Química (RSEF y RSEQ)

[email protected]

La Química en Nature

En la primera edición del año 2011 (6 de enero) se destaca el comienzo del Año Internacional de la Química, dedicándole el editorial (Chemistry’s understated majesty) y varios artículos.

Artículos relacionados con la Química:

Legal highs: the dark side of medicinal chemistry (reflexiones personales de David Nichols, descubridor de la 3,4-metilendioximetanfetamina, MDMA ó éxtasis; Nature 2011, 469, 7)

Chemistry: The trials of new carbon (Nature 2011, 469, 14; comentario)

natiure_carbono

Chemistry: It’s not easy being green (Nature 2011, 469, 18; comentario)

green_chemistry_nature

green-chemistry_12-principios_nature

Let’s get practical (comentario de Whitesides y Deutch, Nature 2011, 469, 21) «Chemistry needs an overhaul if it is to solve big global problems and advance fundamental understanding» (Whitesides y Deutch)

What lies ahead (Diez destacados químicos analizan las prioridades futuras de la Química e identifican a los científicos que les inspiraron) (Nature 2011, 469, 23)

quimicos_galeria-de-grandes_nature

Beyond the bond (comentario de Philip Ball, Nature 2011, 469, 26)

History: Radioactive romance (crítica del libro Radioactive: Marie and Pierre Curie, A Tale of Love and Fallout; Nature 2011, 469, 29)

In retrospect: The Sceptical Chymist (comentario sobre el libro de Boyle, del que se cumple el 350 aniversario, Nature 2011, 469, 30)

boyle_nature

Supramolecular chemistry: Bigger and better synthesis (Nature 2011, 469, 39; News and Views)

Molecular computing: DNA as a logic operator (Nature 2011, 469, 45; News and Views)

Vernier templating and synthesis of a 12-porphyrin nano-ring (Nature 2011, 469, 72)

Sensing the anomeric effect in a solvent-free environment (Nature 2011, 469, 76)

Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis (Nature 2011, 469, 116)

Bernardo Herradón

IQOG-CSIC

[email protected]

Los Premios Nobel olvidados y tardíos. Max Born.

Ya se están empezando a conocer los Premios Nobel de este año (los de Física y Química se anunciarán los días 5 y 6, repectivamente). En ese momento se empezarán a discutir sobre los galardonados, sobre los pronósticos fallidos y se recordarán a los científicos que, mereciéndolo, no lo recibieron y porqué no fueron galardonados. En algunos casos estos “olvidos” fueron intencionados, en otros no intencionados y en, muchos de ellos, para cumplir los deseos de Alfred Nobel: premiar como máximo a 3 científicos por año y especialidad y que estuvieran vivos en el momento del anuncio de la concesión.

Es justo recordar, aunque sólo sea nombrándolos, a algunos de estos olvidados de los Premios Nobel: Gandhi (Paz), Meitner o Slater (Física), Avery o Moncada (Medicina) y Mendeleev, Lewis, Eyring, Ingold, Heitler, London o Carothers (Química). Algunos de estos químicos serán objeto de próximos posts en este blog.

También son interesantes los casos de los científicos que recibieron el Premio Nobel al final de sus vidas, algunos incluso cuando ya prácticamente se habían retirado de la carrera científica o la investigación, por la que fueron galardonados, la habían hecho muchos años antes. Dos químicos muy relevantes, Georg Wittig (1898-1987) y Herbert C. Brown (1912-2004), lo recibieron en 1979 cuando posiblemente lo merecieron muchos antes por sus trabajos de aplicaciones sintéticas de compuestos de fósforo y boro, respectivamente.

Quiero dedicar el resto del artículo al físico Max Born (1882-1970), que recibió el Premio Nobel de Física en 1954 (compartido con Walter Bothe), cuando acababa de retirarse de su cátedra de la Universidad de Edimburgo. La biografía y el resumen del trabajo científico de Born se puede encontrar en multitud de sitios en la web. Entre las contribuciones de Born a la Ciencia, cabe destacar sus investigaciones teóricas sobre la dinámica de los sistemas cristalinos, óptica y mecánica cuántica. Se ha afirmado que “en ningún lugar puede hacerse Física sin topar, de forma directa o indirecta, con el nombre de Max Born.

born_postcard

Aunque afirmaba modestamente que sus conocimientos de Química se limitaban al cloruro sódico; sus investigaciones también han influido en la Química. Aparte de su aportación a la Mecánica cuántica, que son los fundamentos de la Química; también propuso la aproximación adiabática o de Born-Oppenheimer que facilita la resolución aproximada de las ecuación de ondas para sistemas moleculares, o el ciclo de Born-Haber que permite el cálculo de entalpías de reacciones químicas usando como base la Física teórica, este método se aplicó originalmente a la energía de la red cristalina, que no se puede obtener experimental. Además, Born estaba convencido que la Mecánica cuántica debe ser compatible con el concepto de estructura química.

Born recibió el Premio Nobel por su contribución a la Mecánica Cuántica, especialmente por su interpretación estadística de la función de onda. Aunque esta justificación de la Fundación Nobel para concederle el Premio es justa, es insuficiente; pues Max Born debe considerarse como el auténtico padre (quizás compartido con Niels Bohr) de la Mecánica Cuántica (él acuño el término, aunque esto sea anecdótico). Y es injusto que le galardonasen en 1954 cuando, sin duda, lo mereció al menos 20 años antes (en la época de Heissenberg, Schrödinger y Dirac).

Además tenía unas virtudes dignas de elogio como científico y ser humano: humilde, generoso, conciencia social y luchador por la paz.

Acabo de leer algunos ensayos escritos por Born a lo largo de su vida. Los ensayos están recogidos en los libros Ciencia y Conciencia en la Era Atómica (también contiene ensayos escritos por su esposa, Hedwig Born, una pacifista activa durante la Guerra Fría) y Physics in my Generation. Este segundo libro, aunque escrito en un lenguaje asequible (y prácticamente sin fórmulas) está más orientado a especialistas en Física.

El libro Ciencia y Conciencia en la Era Atómica tiene varios ensayos autobiográficos (escritos en diversas épocas de su vida), un ensayo excepcionalmente ameno sobre su investigación en la dinámica de las redes cristalinas, su conferencia de aceptación del Premio Nobel, un artículo sobre Einstein a través de su correspondencia científica y un ensayo sobre la amenaza atómica (muy presente en aquellos años).

En este último artículo, aunque toma como tema del mismo la amenaza atómica; va más allá, dando muestras de una calidad humana impresionante con reflexiones interesantes sobre ciudadanía (¡la anhelada relación entre Ciencia y ciudadanía!) y política.

La formación universitaria de Born fue en Matemáticas en Götinga, dónde estudió y fue colaborador (ayudante de docencia) de cuatro de los más grandes de la época: Klein, Hilbert, Minkowski y Runge. Aunque hubiese podido hacer una carrera brillante en Matemáticas, pensó que no estaría a la altura de sus maestros y prefirió dedicar sus esfuerzos a la Física teórica. Con los cuatro maestros matemáticos (quizás con Klein menos, como reconoce Born, pues Klein era menos asequible) mantuvo relaciones excelentes toda su vida.

En sus escritos defiende su filosofía científica (los ensayos son buenos ejemplos de Filosofía de la Ciencia) de trabajar en varios temas, criticando la especialización excesiva a la que se estaba llegando en la Ciencia (incluso en aquellos años 1950s, ¡si viviese ahora!).

Su actitud frente a los colegas es digna de elogio. Siempre favoreció a los jóvenes investigadores, reconociendo su talento. Su grupo de investigación (primero en Frankfurt y Götinga, hasta que el nazismo le obligó a emigrar, y luego en Edimburgo) fue un vivero o sitio de acogida de algunos de los más importantes científicos del siglo XX. Por citar los nombres más relevantes; tuvo como ayudantes a O. Stern (Premio Nobel), W. Pauli (Premio Nobel), W. Heissenberg (Premio Nobel), E. Hückel, F. Hund, W. Heitler; como a doctorandos a P. Jordan, M. Delbrück, J. R. Oppenheimer (del que no le gustó que posteriormente participase en el Proyecto Manhattan de preparación de la bomba atómica), M. Göppert-Mayer (Premio Nobel); como colaboradores a A. Landé, V. Fock, E. Hyllerass; y como anfitrión de J. E. Lennard-Jones, E. U. Condon, P. Dirac (Premio Nobel), E. Fermi (Premio Nobel), J. E. Tamm (Premio Nobel), N. Mott, F. London, L. Pauling (Premio Nobel), J. Von Neumann, E. Teller y E. P. Wigner (Premio Nobel). ¡Difícil encontrar una cantera mejor!

La relación con sus colaboradores fue especial. Califica a sus dos primeros ayudantes, Wolfgang Pauli y Werner Heissenberg, “como los más aplicados y geniales que uno puede imaginar”. La relación con este último fue especial, con gran generosidad. Cuando Heissenberg escribió el artículo (Z. Phys. 1925, 34, 879) que dio comienzo a la Mecánica cuántica trabajaba en el grupo de Born, este lo revisó y seguro que hizo aportaciones destacables al mismo; sin embargo no exigió firmarlo como autor (¿nos imaginamos esta situación actualmente? ¿qué un “jefe” decline figurar como autor de un artículo de un colaborador?). Posteriormente al envío a publicar de este artículo de Heissenberg, Born en colaboración con su discípulo Jordan desarrolló un formalismo matemático (basado en el álgebra de matrices, que dominaba por su pasado “matemático” y que no era muy común en la época y menos entre físicos) que hacía más asequible la mecánica cuántica, dando lugar dos artículos fundamentales (uno de ellos de Born y Jordan, Z. Phys. 1925, 34, 858; y el otro el famoso Drei-Männer-Arbeit, Born, Heissenberg y Jordan, Z. Phys. 1926, 35, 557).

¿Por qué tardó tanto el Comité Nobel en conceder el Premio Nobel a Born? Muy posiblemente fue debido a que físicos muy relevantes, fundadores de la Física cuántica, como Planck, Schrödinger, de Broglie y Einstein no creían en la Naturaleza estadística, no determinista, que se deducía de la Mecánica cuántica y de la que Born fue el máximo exponente y defensor. Hay que remarcar que fue Born el científico que interpretó el cuadrado (o conjugado complejo) de la función de ondas de Schródinger como una probabilidad, tan familiar para todos los físicos y químicos actualmente, pero revolucionario cuando lo propuso en 1926, y que daba sentido físico al concepto matemático de la función de onda introducido por Schrödinger en su versión ondulatoria de la Mecánica cuántica.

Born mantuvo una relación muy especial con Einstein. Fueron amigos toda la vida, a pesar de las discrepancias científicas sobre la Naturaleza descritas por la Mecánica cuántica. Como es bien sabido, y a pesar de ser uno de los precursores de la Mecánica cuántica. Einstein no creía en que la Naturaleza estuviese regida por leyes estadísticas. Born fue el receptor de la famosa frase “Dios no juega a los dados” escrita por Einstein. Born mantuvo toda su vida una admiración inmensa por Einstein al que consideraba un maestro, reconociéndole una influencia inmensa en su trabajo. Born fue un activo difusor de la Teoría de la Relatividad (plasmada en diversos artículos y en el libro Einstein’s Theory of Relativity), cuyo desarrollo consideraba genial y como él mismo afirmó, “decidió no trabajar en la Teoría de la Relatividad porque nunca podría llegar a la aportación genial de Einstein”.

Born_einstein_relatividad

En definitiva, Max Born ha sido uno de los más grandes científicos de la historia y también una persona digna de elogio por su compromiso ciudadano.

Bernardo Herradón

IQOG-CSIC

[email protected]

Sagan: el maestro de todos nosotros

El diario PÚBLICO entrega los domingos un DVD de la serie COSMOS que concibió, escribió (en colaboración con Ann Druyan y Steven), dirigió y presentó Carl Sagan. Es una buena razón más para desear que llegue el Día del Señor.

Sagan

Como a muchas personas de mi generación, COSMOS supuso una revolución. Los que empezábamos una carrera científica nos animaba a continuarla y, sin duda, fomentó muchas vocaciones científicas entre los más jóvenes. Además, la serie de TV se completó con un libro excelente que se publicó en España en 1980 (el ejemplar de mi colección es de 1980, 4ª edición, con 41000 ejemplares vendidos, lo que debía ser un número alto para la época) y que se ha seguido reeditando (hay al menos edición de 2004).

Cosmos-Sagan

COSMOS_2004

Hoy, con la perspectivas de la edad, con una carrera científica de casi 30 años y con mucho interés en actividades relacionadas con la Cultura Científica; he visto los dos primeros capítulos de la serie y me descubro ante la gran calidad general de los episodios y lo bien que cuenta la Ciencia.

La serie es destacable por el rigor científico, sin embargo, asequible para todos. Recomendaría que la serie fuese de visión obligatoria en la asignatura de Ciencias para un Mundo Contemporáneo de 1º de bachillerato; pues aunque tiene más de 30 años, sigue siendo actual (los episodios tienen un añadido final rodado 10 años después actualizando información).

Sólo queda decir, parafraseando a Laplace (referiéndose a Euler) «Leed a Euler, leed a Euler. Él es el maestro de todos nosotros.» (título de la excelente biografía de Euler, escrita por William Dunham, que es un libro de fácil lectura). Actualizando la frase: IMITAD A CARL SAGAN, ES EL MAESTRO DE TODOS LOS QUE ESTAMOS INTERESADOS EN LA DIVULGACIÓN Y CULTURA CIENTÍFICA.

euler_Dunham_Euler

euler_Duham_Eng

Por cierto, recomiendo la visión de este segundo episodio a los detractores (sin usar razones científicas) de los transgénicos. Aunque Sagan no habla de transgénico, sí lo hace de evolución artificial: prácticamente toda nuestra ganadería y agricultura es producto de la evolución artificial.

Bernardo Herradón

IQOG-CSIC

[email protected]



Congreso de Karlsruhe: 150 años.

Hoy se cumplen 150 años de la inauguración del Congreso de Karlsruhe, que marcó el comienzo de la Química moderna.

Antes del Congreso, la Química era un caos. Los químicos de la época (muchos de ellos brillantísimos con gran influencia en la historia de la ciencia) no se ponían de acuerdo sobre la existencia o no (y la distinción) entre átomo y molécula; había una enorme confusión entre peso atómico (asignando pesos atómicos distintos a los mismos elementos), peso molecular y peso equivalente; y no había acuerdo en la nomenclatura, formulación y símbolos químicos.

Para intentar debatir ideas y llegar a algún acuerdo sobre los aspectos indicados en el párrafo anterior, Kekulé, Wurtz y Weltzien convocaron un congreso para los días 3, 4 y 5 de septiembre de 1860 en la ciudad alemana de Karlsruhe. Se invitó a todos los químicos del mundo y el Congreso tuvo una gran asistencia, con 127 participantes de 12 países (un español, el profesor Ramon Torres, de la universidad central de Madrid), la mayoría (126) de países europeos y un mexicano (Posselt). Algunos de los químicos más destacados asistieron, entre los que cabe citar a Bunsen, Baeyer, Erlenmeyer, Hoffmann, Meyer, Frankland, Kekulé, Dumas, Wurtz, Crum Brown, Borodin (el famoso músico, también profesor de Química) y Wislicenus. Al congreso también asistieron dos jóvenes químicos, Cannizzaro (1826-1910) y Mendeleev (1834-1907). Uno de ellos (Cannizzaro) tuvo una influencia enorme en el desarrollo del Congreso; y el otro (Mendeleev) recibió inspiración fundamental para desarrollar la Tabla Periódica de los Elementos Químicos (1869).

Stanislao Cannizzaro, basándose en la hipótesis de Avogadro, había elaborado un documento (adaptado a partir de uno escrito en 1858, Sunto di un corso di Filosofia Chimica) explicando las diferencias entre átomo y molécula; así como en las distinciones entre pesos atómicos y moleculares, proponiendo pesos atómicos a los elementos basándose en los datos experimentales conocidos. De esta manera se empezó a resolver muchos problemas de composición de los compuestos químicos (por ejemplo, en aquella época, la fórmula del agua podía ser H2O ó H2O2). Cannizzaro con sus intervenciones en el Congreso y con la distribución del documento a los participantes, contribuyó a «poner orden» en la Química.

A partir del Congreso de Karlsruhe empezó la sistematización de la Química. Se distinguió entre átomo y molécula, se asignaron pesos (masas) atómicos y moleculares aceptados por la comunidad química, se reconoció que ciertos elementos químicos eran diatómicos, se adoptaron fórmulas que representasen mejor los compuestos químicos (a propuesta de Kekulé), se profundizó en el concepto de valencia (a partir de los estudios de Frankland).

También, el Congreso de Karlsruhe fue el punto de partida para la organización regular de congresos de Química y para la consolidación de las sociedades químicas nacionales e internacionales que dieron lugar a la IUPAC (Unión Internacional de Química Pura y Aplicada) en 1919.

Espero que el año 2011, Año Internacional de la Química, suponga un revulsivo como lo fue el año 1860; quizás no tanto en el plano científico, sino en el de la influencia de la Química en la sociedad.

Bernardo Herradón

IQOG-CSIC

[email protected]

Nirenberg: Un bioquímico precursor de la biología molecular.

El pasado día 15 falleció Marshall W. Nirenberg, Premio Nobel de Medicina o Fisiología en 1968, por su contribución al desciframiento del código genético. Nirenberg ha sido uno de los científicos más destacados del siglo XX y en su grupo se realizaron algunos de los experimentos más importantes y bellos de la historia de la ciencia. Los resultados obtenidos por Nirenberg y otros científicos (Ochoa entre ellos) a principios de los años 1960s demostraron el “dogma” de la biología molecular y caracterizaron la relación entre la secuencia de bases de un gen y la secuencia de aminoácidos de una proteína. Descanse en paz.

Nirenberg, nacido en Nueva York (1927), se licenció en Zoología y Química (¡una combinación curiosa!) por la Universidad de Florida. Realizó la tesis doctoral en química biológica en la Universidad de Michigan (1957). Realizó una estancia postdoctoral en el Instituto Nacional de Artritis y Enfermedades Metabólicas del NIH (Nacional Institute of Health), donde permaneció el resto de su carrera científica.

Desde su incorporación al NIH, empezó a investigar la existencia de mRNA y su papel en la síntesis de proteínas (para confirmar la propuesta del “dogma de la biología molecular” de Francis Crick) y con su colaborador Heinrich Matthaei desarrolló una técnica que permitía detectar la síntesis de proteína en acción, a través del estudio de la incorporación de aminoácidos radioactivos en proteínas. Esta técnica les permitió realizar alguno de los experimentos más espectaculares de la historia de la ciencia al demostrar (en el primer experimento de la serie) que el ácido poliuridílico [un RNA sólo con nucleótidos con uracilo (U) como única base] es un precursor de polifenilalanina.

En esa época se estableció una carrera entre diversos grupos de investigación (entre los que destacaba el de Severo Ochoa) por descifrar el código genético, siendo el de Nirenberg el primero en conseguirlo. A partir de ahí, la historia es conocida…

Nirenberg recibió el Premio Nobel de Medicina en 1968, compartiéndolo con Holley y Khorana (dos químicos). ¡La época en la que los químicos eran galardonados con los Premios Nobel de Medicina!

Recientemente (Noviembre de 2009) la ACS (American Chemical Society) ha elegido “el desciframiento del código genético” como uno de los “acontecimientos químicos relevantes” (Nacional Historic Chemical Landmark). Curiosamente, fue el primer empleado del gobierno federal de Estados Unidos galardonado con un Premio Nobel. EL NIH tiene una página web con numerosa información sobre la vida e investigación de Nirenberg y, en 2004, publicó un artículo personal sobre sus investigaciones en Trends Biochem. Sci. 2004, 29, 46.

Ciencia y crisis


En el último número de la revista de la Sociedad Española de Bioquímica y Biología Molecular (SEBBM) se han publicado una serie de artículos reflexionando sobre la ciencia en época de crisis económica. Todos los artículos son muy interesantes;  pero para el tema de este blog, recomiendo especialmente el escrito por el profesor Cossío, dónde se citan tres ejemplos de avances de la química que impactaron en la sociedad (investigaciones de Lavoisier, de Pasteur y de Fawcett y Gibson) y que se produjeron en épocas de crisis económicas, sociales y políticas muy severas.

Continuar leyendo