IMPACTO DE LA QUÍMICA EN LA SOCIEDAD A LO LARGO DE LA HISTORIA

Dra. Mercedes Alonso Giner

Septiembre de 2010

¿Qué es la Química?

 La Química es la ciencia que estudia las sustancias, su estructura, sus propiedades y las reacciones que las transforman en otras sustancias

Etimología

Origen egipcio: "Kēme" (tierra) → "Khēmia" (transmutación)

QUÍMICA ← alquimia (arte de la transformación)

Origen griego: "khumos" (el jugo de una planta)

Químicos Célebres

Homo Erectus (1.8 mill - 300000 a.C.) (1493-1541)

Paracelso

Robert Boyle (1627-1691)

A. L. Lavoisier (1743-1794)

John Dalton (1766-1844)

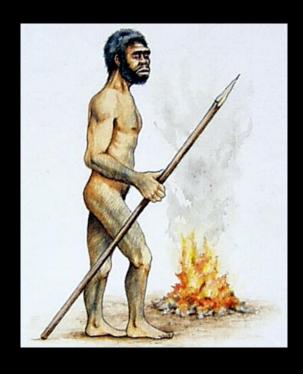

A. Avogadro (1776-1856)

August F. Kekulé Alfred B. Nobel (1829-1896)

(1833-1896)

D. Mendeleiev (1834-1907)

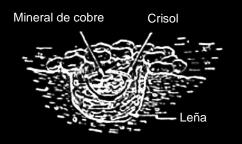
Marie Curie (1867-1934)


E. Rutherford (1871-1937)

Linus Pauling (1901-1994)

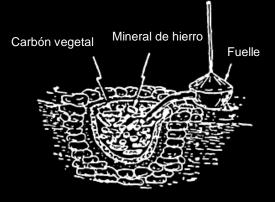
FUEGO

- Fuente de calor
- Cocinar los alimentos
- Protección contra los animales



AUMENTÓ LA CALIDAD DE VIDA DESARROLLO DE LA METALURGIA **ELABORACIÓN DE CERÁMICAS**

Combustible + O_2 (Aire) \longrightarrow Calor + H_2O + CO_2 Reacción de Combustión:


METALES

~3500 a. C.: Descubrimiento del bronce (aleación de cobre y estaño)

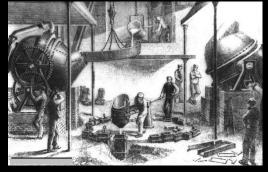
~1000 a. C.: Descubrimiento del hierro

USO ORNAMENTAL

FABRICACIÓN DE HERRAMIENTAS

Crisoles primitivos

Reacción de Oxidación: C (carbón vegetal) + 2 MO (mineral) → 2 M + CO₂



METALES

Revolución en la fabricación del acero

Desarrollo del ferrocarril Construcción de rascacielos

Convertidor de Bessemer

Embalaje alimentos Utensilios de cocina

F. Wöhler descubre el aluminio

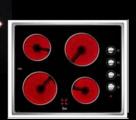
Fuselaje de aviones

Numerosas aplicaciones industriales Industria de aviación

CERÁMICA

- Primeros materiales cerámicos
- **Cerámica** deriva del griego "keramiké", sustancia quemada.

Cerámica Neolítica



Figuras de ornamentación
Material de construcción

Vitrocerámicas

Desarrollo de nuevos materiales cerámicos: electrocerámicas, composites, gres, etc.

Numerosas aplicaciones industriales:

Semiconductores

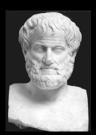
Aislantes

Objetos de arte

Sensores

La Química como Ciencia

1. GRECIA: los elementos


🗱 ¿Cuál es la naturaleza de las sustancias?

materia compuesta por átomos (partículas indivisibles)

* Aristóteles (384–322 a.C.):

materia compuesta por 4 elementos (agua, tierra, aire y fuego)

sequedad

frío

La Química como Ciencia

2. ALQUIMIA (s. III a.C. - s. XVI d.C.)

Alquimia Árabe

Búsqueda de la *piedra filosofal*: método para transformar cualquier metal en oro

Taller de alquimia de la edad media

- Nuevas sustancias: H₂SO₄, HNO₃, agua regia
- Nuevas técnicas de laboratorio: destilación, fermentación
- Nuevos elementos: antimonio, arsénico, cobalto, fósforo

Símbolos alquimistas

Alquimia China

Búsqueda de la elixir de la vida: sustancia capaz de conferir la inmortalidad

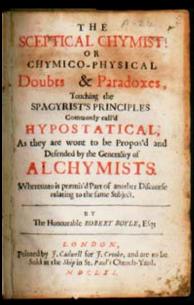
Invención de la pólvora (KNO₃ + S + C)

La Química como Ciencia

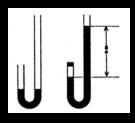
2. ALQUIMIA

Paracelso (1451-1541):

- Promulgó la utilización de compuestos químicos en medicina
- Descubrió nuevas enfermedades y medicinas
- Fundó la iatroquímica, precursora de la farmacología


[&]quot;Muchos han dicho que la alquimia es para fabricar oro y plata. Para mí no es tal propósito sino considerar la virtud que hay en las medicinas"

La Química como Ciencia


3. LOS GASES

Robert Boyle (1627–1691):

"El químico escéptico" (1661)

- Aplicó por primera vez el método científico
- Estudió el comportamiento de los gases: "Ley de proporcionalidad de los gases"

Experimento de Boyle:

"La Presión de un gas es inversamente proporcional al Volumen, a T constante"

- Sus experimentos marcan el fin de la Alquimia
- Estableció el concepto de **elemento**: "sustancia inmutable e indestructible incapaz de descomponerse"

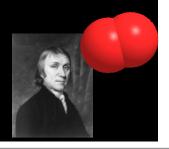
La Química como Ciencia

3. LOS GASES

Georg E. Sthal (1660-1734):

Teoría del flogisto: "Durante el proceso de combustión, los compuestos liberaban al aire el flogisto"

Descubridor del nitrógeno, "aire flogisticado"



Henry Cavendish (1731–1810):

Descubridor del hidrógeno, "aire inflamable"

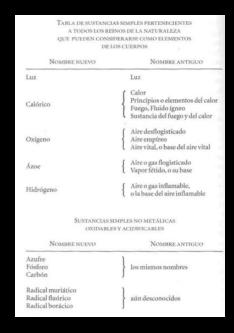
Joseph Priestly (1733–1804):

Descubridor del oxígeno, "aire deflogisticado"

Química Moderna

Laurent Lavoisier (1743–1794):

- Padre de la Química Moderna
- Estudió las propiedades del oxígeno
- Eliminó la teoría del flogisto
- Enunció la "Ley de la conservación de la masa"



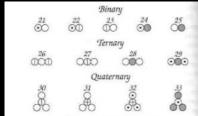
Química Moderna

- Laurent Lavoisier (1743–1794):
- Elaboró un sistema lógico de nomenclatura (1789)

Tabla de sustancias simples, cuerpos metálicos simples oxidables y acidificables											
Nov	BRE NUEVO	Nombre antiguo									
Antimonio Arsénico Bismuto Cinc Cobalto Cobre Oro Hierro Plomo Manganeso Mercurio Molibdeno Niquel Platino		régulo de	Antimonio Arsénico Bismuto Cimc Cobalto Cobre Oro Hierro Plomo Manganeso Mercurio Molibdeno Níquel Platino								
Plata Estaño Tungsteno		ender of all enter	Plata Estaño Tungsteno	() ()							

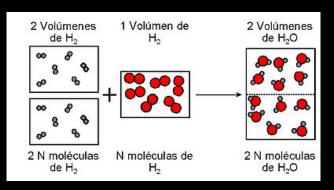
"Un segundo bastó para separar su cabeza del cuerpo, pasarán siglos para que una cabeza como aquella vuelva a ser llevada sobre los hombros de un hombre de ciencias". J. Lagrange

Química Moderna


Pariton (1766–1844):

- Formuló la teoría atómica
- Estableció una tabla de pesos atómicos
- Enunció la "Ley de las proporciones múltiples":
 los compuestos están formados por combinación de átomos de elementos diferentes en proporciones definidas por números enteros pequeños.

Símbolos de Dalton


Química Moderna

Amadeo Avogadro (1766–1856):

- Estableció la *hipótesis de Avogadro*: " A una T y P dadas, el número de partículas en volúmenes iguales de gases es el mismo"
 - Introdujo el concepto de **molécula**: el más pequeño agregado de átomos capaces de existir independientemente y poseer las propiedades de la sustancia

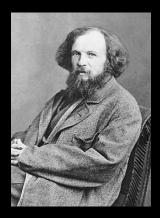

Hipótesis de Avogadro:

Tabla Periódica

Dimitri I. Mendeleiev (1834–1907):

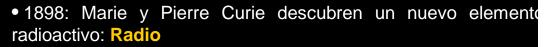
- 1860: Se conocían ~60 elementos. ¿Había algún orden?
- Ordenó a los elementos en función de sus pesos (periodos) y de sus valencias (grupos)
- Propuso una tabla periódica que ha dado lugar a la actual
- Predijo la existencia de nuevos elementos

Perlada																			
	1 I																		2 He
2	3	4												5	6	7	8	9 F	10
3	Li 11 Na	12 Ma												13 Al	C 14 Si	15 P	0 16 S	17 CI	Ne 18 Ar
	19 K	Mg 20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 V	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53	54 Xe
3	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sq	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	Uuo
Lent	śnidos			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
Aci	inidos			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Nuevos Elementos

Gases Nobles

- 1894: William Ramsay descubre un nuevo gas: Argón
- Más tarde identificaron el resto de gases inertes


Señales luminosas

Medicina

Creación de atmósferas inertes

Criogenia

Radio

Aclaran la naturaleza de la radioactividad: radiación atómica

Medicinas

Pinturas

Quimioterapia Cosmética

¿átomo indivisible?

Nuevos Elementos

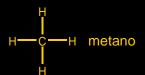
Wolframio

• 1783: Hermanos de Elhuyar aislan wolframio de la wolframita

• También se le conoce con el nombre de tungsteno

Material bélico Bombillas

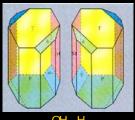
Industria Aeronáutica Bobinas



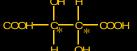
Juan de Elhuyar

Química Orgánica

Friedich A. Kekulé (1829–1886):



- Definió la química orgánica como la química de los compuestos de carbono
- Principal arquitecto de la estructura molecular



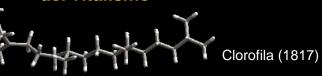
- Demostró que el carbono es tetravalente
- Descubrió la estructura cíclica de los compuestos aromáticos

L. Pasteur (1822–1886):

 Descubrió la existencia de los isómeros ópticos: sustancias idénticas que desvían el plano de la luz polarizada en sentidos opuestos



Cristales ópticos del ácido tartárico (vino) Enantiómeros de los aminoácidos



Química Orgánica

En un principio, se aislaron y caracterizaron sustancias presentes en las plantas y animales

• 1807: Jöns Jacob Berzelius (1779-1848) propone la **teoría** del vitalismo

Friedich Whöler (1800–1882):

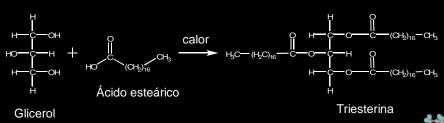
• Sintetiza la urea a partir del calentamiento del cianato amónico (sal inorgánica).

$$NH_4CNO$$
 calor H_2N NH_2

Química Orgánica

3 A. W. H. Kolbe (1818–1884):

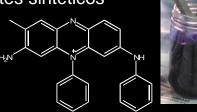
• Sintetiza el ácido acético



P. E. M. Berthelot (1827–1907):

Fin de la teoría de vitalismo

Sintetiza por primera vez una grasa: la triesterina


Química Orgánica

W. H. Perkin (1838–1907):

- Sintetiza el primer colorante sintético: "púrpura de anilina"
- Fundó la industria de los colorantes sintéticos

Industria textil
Aditivos alimentarios

- Sintetiza el primer celuloide (material plástico)
- Fundó la industria del celuloide

Nitrato de celulosa Alcánfor Alcohol

plástico

Química Orgánica

3 A. W. H. Kolbe (1818–1884):

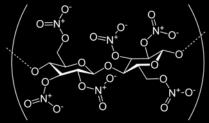
• 1859: Sintetiza sal sódica del ácido salicílico

Felix Hoffman (1868–1946):

• Sintetiza el ácido acetilsalicílico: la aspirina

Analgésico Antipirético Antinflamatorio

Química Orgánica


C. Friedich Schönbein (1799–1868):

 Sintetiza el primer explosivo: la nitrocelulosa ó algodón de pólvora

Pólvora sin humo Proyectiles Celuloide

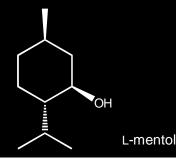
Alfred B. Nobel (1833–1896):

• Sintetiza un explosivo seguro: la dinamita

Construcción Minería Industria militar

Fármacos

- Síntesis de muchos productos naturales de gran complejidad estructural
 - Heinrich O. Weinland (1877–1957) y A. Windaus (1879-1959): esteroides



• Otto Wallach (1847-1931): determinó la estructura de los terpenos

Perfumería

Aromaterapia

Medicina

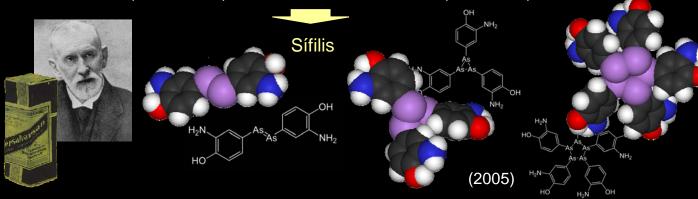
Fármacos

- Síntesis de muchas sustancias bioactivas
- Robert Robinson (1886-1975): determinó la estructura de muchos alcaloides

Medicamentos Analgésico

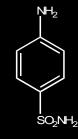


• Robert B. Woodward (1917-1979)


H₃C Antimalárico
Quinina

Fármacos

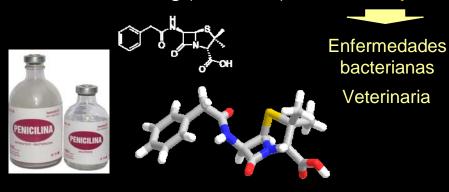
- Primeros compuestos sintéticos como medicamentos
- Paul Elrich (1854-1915): sintetizó la arsfenamina (salvarsan)


• Gerhard Domagk (1895-1964): sintetizó la sulfanilamida y derivados (SO₂N)

Enfermedades infecciosas

Diuréticos

Antituberculosos



Fármacos

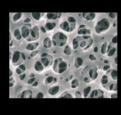
bacterianas

Veterinaria

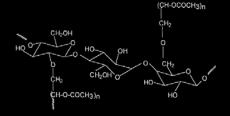
- Primeros productos naturales como antibióticos
- Alexander Fleming (1881-1955): descubrió la penicilina (primer antibiótico)

rent of the cultive plate

Penicilinas sintéticas



Nuevos Materiales


George Eastman (1854-1932): descubrió el acetato de celulosa (termoplástico)

Industria del cine Fotografía

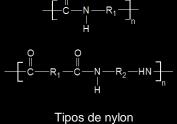
Leo Hendrick Baekeland (1863-1944): descubrió la bakelita (plástico termoestable)

Bakelita: resina fenol-formaldehído

Teléfonos Enchufes

Nuevos Materiales

W. H. Carothers (1896-1937): descubrió el neopreno y nylon (cauchos sintéticos)



Karl Ziegler (1898-1973) y Giulio Natta (1903-1979) : descubren los polímeros lineales utilizando catalizadores organometálicos: polietileno, polipropileno, etc.

Numerosas aplicaciones:

Cuerdas, cables, prótesis, lentes de contacto, bolsas, piezas mecánicas,...

Fertilizantes y Plaguicidas

PROBLEMA: Producir los alimentos necesarios para una población mundial creciente

Fritz Haber (1868-1934): sintetizó el amoniaco a partir del N₂ atmosférico

Precursor de los fertilizantes nitrogenados

Aumentó drásticamente la productividad agraria:

Nº humanos/hectárea: 1.9 (1908) -

→ 4.3 (2008)

 Los fertilizantes nitrogenados responsables del 48% de la población mundial

Nature Geoscience 2008, 1, 636-639

Fertilizantes y Plaguicidas

PROBLEMA: Erradicación de plagas

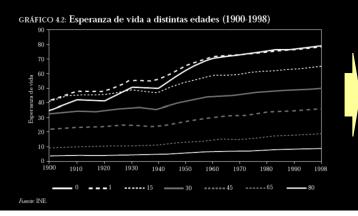
1873: *Ottmar Zeidler* (1859-1911): sintetizó el **DDT** (un potente insecticida)

1936: Paul Hermann Müller (1859-1911): descubre su fuerte acción insecticida.

1972: Agencia de protección Medioambiental de EEUU prohíbe su uso

"DDT es altamente tóxico; es estable y persistente y tiene una duración de décadas antes de degradarse; se evapora y se desplaza a largas distancias a través del aire y el agua, y se acumula en el tejido adiposo de los seres humanos y las especies silvestres"

2006: Organización Mundial de la Salud anuncia que se utilizará de nuevo el DDT para erradicar la malaria en países subdesarrollados


Esperanza de Vida

Gracias a las aportaciones de la QUÍMICA la esperanza de vida ha aumentado espectacularmente

Edad de Bronce: la esperanza de vida eran 18 años

Finales del siglo XIX: la esperanza de vida eran 35 años

Finales del siglo XX: la esperanza de vida asciende a 66 años, alcanzando los 80 años en los países más desarrollados

Potabilización del H₂O Vacunas, medicamentos Fertilizantes, plaguicidas Conservantes Y muchos más...

Muchas gracias

