Archivos de la categoría: Nanociencia

La revolución de esta época: las nanoformas del carbono.

Esta semana hacemos doblete en el curso de divulgación Los Avances de la química y su Impacto en la Sociedad.

El jueves 1 de marzo, tendremos al profesor Nazario Martín que impartirá una conferencia sobre las nanoformas del carbono, sin duda, una de las revoluciones científicas de finales del siglo XX y comienzos del siglo XXI.

Más información en el cartel.

 

 

Nazario Martín con una tarta ‘fullerénica’ durante la primera edición del curso de divulgación.

Bernardo Herradón

Nanomateriales porosos para el tratamiento de enfermedades óseas

La profesora María Vallet es la gestora del proyecto europeo ‘polyValent mEsopoRous nanosystem for bone DIseases‘.

Desde el Consejo de Europeo les han animado a participar en un concurso con un video que explica el contenido del proyecto.

Los mejores videos se emitirán en el ESOF2018 que se celebrará en Toulouse del 9 al 14 de julio, y el que mas «likes» tenga, recibirá un premio.
Este es el link:
Os pido que deis la máxima difusión al video y que no os olvidéis de dar y pedir que le den a «me gusta».

Curso de divulgación: Los Avances de la Química y su Impacto en la Sociedad.

El curso de divulgación «Los Avances de la Química y su Impacto en la Sociedad» comenzará el próximo 10 de enero (jueves) a las 18:00.

La conferencia inaugural será a cargo de la profesora María Vallet-Regí con el título «¿Puede la química contribuir a reparar el cuerpo humano?«

La profesora Vallet-Regí es uno de los científicos mundiales más destacados en el área de biomateriales y nos va a explicar algunos de los avances más importantes y recientes en este área de investigación.

Todas las sesiones tendrán lugar en el salón de actos del edificio del CSIC en la calle Serrano 113. Es el edificio que está a la izquierda de la entrada principal del campus central del CSIC. Las líneas de autobuses 51 y 19 tienen paradas en la puerta del CSIC. La línea Circular de autobuses también tiene parada cercana (calle Joaquín Costa esquina a la calle Velázquez) y la estación de metro República Argentina está cerca de la sede central del CSIC. Tampoco está lejos la estación de metro de Avenida de América (salida Príncipe de Vergara).

El curso constará de 11 conferencias (los jueves entre el 10 de enero y el 21 de marzo) y dos mesas redondas (los lunes 4 de febrero y 4 de marzo). El programa y el calendario del curso se puede consultar en esta página web. En la web Los Avances de la Química se irá colgando información del curso y también se informará en esta página de Facebook y en esta cuenta de Twitter.

El curso en gratuito y la asistencia es libre, se puede asiatir a las sesiones que se deseen. Las personas interesadas podrán tener un diploma de asistencia si asisten a un mínimo de ocho sesiones.

Para obtener más información contactar con [email protected]

 

 

Bernardo Herradón
CSIC
[email protected]

 

Fármacos, nanomedicina y biomateriales.

Los próximos 24 y 25 de abril tendrá lugar en la sede de Real Academia de Farmacia, el Simposio Internacional sobre Fármacos, nanomedicina y biomateriales: un objetivo común; organizado por la profesora María Vallet-Regí (Facultad de Farmacia, Universidad Complutense de Madrid). La asistencia es gratuíta, pero es conveniente inscribirse (a través del folleto informativo, ver más abajo).

Este Simposio versará sobre fármacos, nanomedicina y biomateriales, como lugar de encuentro en la búsqueda y consecución de un objetivo común: remediar el dolor, la enfermedad, y el deterioro de nuestros cuerpos, en aras de la consecución de una mejor calidad de vida. Se desarrollarán ponencias sobre como:

• Diseñar nanoestructuras para mejorar la administración de fármacos.

Evitar efectos secundarios no deseados durante la administración de fármacos citotóxicos.

• Diseñar nanopartículas como elementos para dispositivos destinados a lograr una liberación de fármacos altamente tóxicos, de forma que se dirijan directamente hacia los tumores, y de esta forma se consigan emplear dosis adecuadas, mínimas con respecto a las empleadas en quimioterapia, que garanticen la muerte de las células tumorales sin afectar a las sanas.

• La nanotecnología se está desarrollando de forma acelerada e incesante hacia la prevención y tratamiento de enfermedades infecciosas y agresivas que no se pueden tratar con éxito con las técnicas convencionales.

• Los avances incesantes en la preparación de nanosistemas con aplicaciones en el campo de la medicina han dado lugar a nuevos retos en el diseño de materiales inteligentes capaces de responder a las exigencias clínicas.

• Diseñar dispositivos y técnicas para lograr imágenes del tejido tumoral.

• Fabricar, cuando sea necesario, piezas de repuesto para el cuerpo humano utilizando la ingeniería de tejidos y la terapia celular.

Para más información se puede descargar el folleto informativo con el programa detallado de las ponencias.

Bernardo Herradón García
CSIC
[email protected]

Los materiales nanoestructurados en nuestra vida diaria. Entrevista a Rosa Menéndez.

Entrevista realizada por Lorena Cabeza (DIVULGA) para Profes.net

Rosa Menéndez nació en Corollos, Asturias, en 1956. Tras graduarse en Química y doctorarse en esta misma disciplina por la Universidad de Oviedo en 1986, pudo llevar a cabo varias estancias postdoctorales en Inglaterra y Estados Unidos. En 1989 se incorpora al Instituto Nacional del Carbón del CSIC, donde actualmente lleva a cabo su trabajo como profesora de investigación. Entre los años 2003 y 2008 ha sido directora de este instituto, y entre 2008 y 2009 ostentó el cargo de vicepresidenta de Investigación Científica y Técnica del CSIC. Es autora de más de 160 artículos en revistas científicas de impacto y ha dirigido 16 tesis doctorales. Su investigación se centra en la química de los materiales y la energía, y en concreto en la mejora de los procesos de conversión del carbón y la puesta en valor de sus derivados y los del petróleo. También dirige una línea de investigación sobre la síntesis química del grafeno, un material que puede revolucionar nuestras vidas en un futuro cercano.

¿Qué trabajo lleva a cabo en el INCAR?

R.- Desde comienzos de los años 90 venimos desarrollando materiales de carbono de características muy distintas, como fibras de carbono, materiales compuestos, carbones activados y en los últimos años materiales grafénicos. Partiendo de derivados del carbón y del petróleo, preparamos precursores específicos para cada tipo de material. Y el material, a su vez, viene condicionado por la aplicación para la que está previsto. Nuestros materiales encuentran aplicación en el sector aeronáutico, con materiales compuestos; el almacenamiento de energía, con carbones activados y grafenos; la catálisis, con carbones activados y grafenos; y el medio ambiente, con carbones activados y grafenos para la eliminación de contaminantes en vertidos industriales.

¿Qué son los materiales nanoestructurados? ¿Cuál es su ventaja respecto a otros materiales convencionales?

R.- Desde que se comenzó a trabajar en nanotecnología, en la década de los 80, se han tratado de desarrollar nuevos métodos de producción de materiales constituidos por cristales de un tamaño inferior a los 100 nanómetros, los llamados materiales nanoestructurados. Cuando se reduce el tamaño de los materiales al rango nanométrico, se inducen diferencias en sus propiedades físicas. También los procesos superficiales se ven fuertemente alterados. Por ello, un control preciso de las dimensiones de los materiales en el rango de los nanómetros nos permite variar sus propiedades. Esto abre la puerta al diseño de materiales para mercados muy diversos como las aplicaciones biomédicas, ópticas, en energía, etc.

¿Están presentes los materiales nanoestructurados en nuestra vida diaria?

R.- Lo están desde hace años. Por ejemplo, los ordenadores han experimentado desde los años 90 mejoras muy importantes debido precisamente al uso de materiales nanoestructurados. Los paneles solares fabricados con nanomateriales también permiten minimizar el empleo de bloques de silicio. Otros materiales comunes que contienen nanopartículas son las cremas solares, donde se emplean para absorber la radiación UV, además de para facilitar su incorporación a la piel. También se emplean nanopartículas de plata como agentes biocidas para minimizar el riesgo de contraer infecciones. Los nanomateriales también están presentes en el deporte: bicicletas con nanotubos de carbono, raquetas de tenis reforzadas con estos nanotubos, etc. Y todavía son muchas más las aplicaciones que se esperan en los próximos años: leds fabricados a partir de puntos cuánticos mucho más baratos que los actuales, materiales capaces de introducirse en nuestro cuerpo y atacar selectivamente células cancerígenas, etc.

¿Son estos materiales seguros?

R.- La mayoría de los nanomateriales no son más peligrosos que sus equivalentes “macro”. Por ejemplo, los materiales en forma de películas delgadas que conforman las memorias de los ordenadores no son más dañinas por el hecho de ser nano. En general, debemos distinguir dos casos: uno, los nanomateriales adheridos a otros materiales, que no resultan más peligrosas que las micropartículas correspondientes (depende solo de su naturaleza: el arsénico es igual de tóxico nanoestructurado o no); y dos, nanopartículas dispersas en el aire, que pueden resultar más peligrosas al ser inhaladas.

¿Cuáles son los materiales avanzados más prometedores en los que se está investigando?

R.- El mundo de los materiales es muy amplio, pero todo lo relacionado con nanomateriales, láminas delgadas y materiales inteligentes está dentro de lo más prometedor. En concreto, existen grandes expectativas en relación con los materiales grafénicos por su gran potencial para aplicaciones que van desde el campo de las comunicaciones y microelectrónica a otros ámbitos como la química fina y la energía, en producción y almacenamiento. Se trata de un material con unas propiedades electrónicas únicas, además de una especial resistencia y flexibilidad.

¿Qué características son las que hacen del grafeno un material tan especial?

R.- El grafeno, formado por una capa de átomos de carbono, es a la vez metálico, flexible y transparente. Es resistente, sus constantes elásticas son las más altas que se han medido en un material, y admite tensiones muy elevadas sin romperse. Es además muy impermeable, ya que no permite el paso de átomos y moléculas a pesar de su pequeño espesor. Desde el punto de vista químico es un material inerte.

¿En qué aplicaciones concretas se espera que se use?

R.- El hecho de presentar unas excelentes propiedades mecánicas, térmicas, eléctricas y ópticas, le convierte en candidato para un gran número de aplicaciones en áreas tan diversas como la nanoelectrónica, los sensores moleculares, las telecomunicaciones, los componentes mecánicos, en forma de material compuesto, almacenamiento de energía y salud, por ejemplo, en la liberación controlada de fármacos.

¿En qué fase se encuentra la investigación sobre grafenos?

R.- La investigación sobre grafenos avanza de forma rápida, a pasos agigantados científicamente hablando. En estos momentos el objetivo es buscar procesos que permitan su obtención en grandes cantidades, de forma competitiva desde el punto de vista económico y energético, y respetando el medio ambiente. Las expectativas superan con creces a las planteadas por los fullerenos y nanotubos de carbono en su día, y parecen estar más próximas a su materialización. Tienen la ventaja de la variedad y simplicidad de los procesos y de la variedad en la calidad de los materiales, con lo que pueden ser utilizados en aplicaciones muy diversas. Para la utilización masiva de los grafenos todavía queda mucho camino por recorrer y mucha investigación por realizar.

¿Cómo se obtiene el grafeno?

R.- Se utilizan fundamentalmente dos vías para su síntesis, a partir del grafito o materiales grafíticos: mediante la separación de las láminas de grafeno individuales mecánicamente o por vía química -lo que se denomina método top-down-, y mediante síntesis química o depósito en fase de vapor a partir de moléculas más pequeñas –el método bottom-up-. La primera incluye también la obtención de grafenos mediante apertura de nanotubos. Cada una de ellas dispone de un amplio abanico de precursores y condiciones de proceso que enriquecen o dificultan, según se mire, la consecución del material final. En nuestro grupo los estamos preparando por vía química, utilizando distintos grafitos de partida y aplicando distintos procedimientos de reducción, y también por apertura de nanofibras y nanotubos, y mediante exfoliación mecánica del grafito.

Y, ¿qué hay de los fullerenos?

R.- Los fullerenos han marcado un hito desde el punto de vista científico. Se mostró al mundo una nueva forma de carbono que nadie hubiese imaginado. Supusieron un salto cualitativo en la ciencia del carbono, hasta entonces basada en las dos formas alotrópicas conocidas por todos, el grafito y el diamante. Se ha trabajado intensamente en la búsqueda de aplicaciones para este material en campos como la biomedicina o la energía, pero en mi opinión no se han consolidado y siguen siendo materia de investigación después de más de veinte años. También es relevante el que abrieran el camino al descubrimiento de los nanotubos de carbono, que sí se están produciendo a escala industrial y están ampliando considerablemente su rango de aplicaciones.

Curso de introducción a la nanotecnología

El Colegio Oficial de Físicos, la Universidad Pontificia de Comillas y el Instituto de Ciencia de Materiales de Madrid del CSIC están organizando un curso de Nanotecnología dirigido fundamentalmente a la comunidad educativa.

Toda la información se encuentra disponible en http://www.cofis.es/ofertaformativa/cofisorganiza.html#nano. El programa se puede descargar aquí.

Dicho curso tiene como finalidad acercar, a través del profesorado y utilizando las materias convencionales de perfil científico, la nanotecnología a las aulas. De esta manera se intenta que los estudiantes, como futuros ciudadanos o quizás como futuros científicos, estén al tanto de los avances en una de las ramas científico-técnicas que más van a incidir en el futuro desarrollo de nuestra sociedad.

Remitido por:

Pedro Serena

Coordinador del Curso «Introducción a la Nanotecnología: Actualidad y Perspectivas»

[email protected]

XXXIII Reunión Bienal de Química. Segundo día.

El segundo día de la XXXIII Reunión Bienal de Química también tuvo un programa intenso con dos conferencias plenarias, sesión de póster y cinco sesiones paralelas. Como no se puede ir a todo, asistí a las dos conferencias plenarias, a otra invitada, a dos comunicaciones seleccionadas y a dos sesiones de comunicaciones flash. Escuché mucha y buena químca (en algunos casos frontera con la física, la ciencia de los materiales y la ingeniería) sobre superconductores, mecanismos de reacciones orgánicas, efecto invernadero, polímeros quirales y células solares.

Continuar leyendo

Bienal de Química. Segunda entrega.

La sesión de tarde del primer día de congreso también tuvo un alto nivel cientifico, siendo difícil elegir la ponencia a escuchar. Comentaré las charlas a las que pude asistir.

La Dra. Mª Ángeles Herranz es una joven investigadora del Departamento de Química Orgánica de la Universidad Complutense de Madrid que lleva un tiempo trabajando en nanoestructuras de carbono en el grupo liderado por el profesor Nazario Martín. La exposición de la Dra. Herranz se centró en la síntesis, caracterización estructural y propiedades (especialmente eléctricas) de fullerenos y nanotubos de carbono. Describió las propiedades de derivados de fullerenos (incluidos los endohédricos, distintos del clásico C60) que encapsulan átomos y sales de escandio y lantano. La derivatización de los fullerenos y los nanotubos se realizó con sistemas dadores de electrones como el tetratiofulveno (TTF). Resumen de la comunicación.

Dentro del mismo simposio de Materiales Moleculares y Nanociencia, la siguiente ponencia corrió a cargo de la Dra. Mª Jesús Vicent (del Centro de Investigación Príncipe Felipe de Valencia) que describió resultados de la investigación de su grupo en la que ciertos polímeros se conjugaron con moléculas farmacológicamente activas. Esta estrategia puede ser muy útil para tratar ciertas enferemedades, como por ejemplo, el cáncer, como presentó la ponente. Resumen de la presentación

El Dr. Rubén Martín (del Instituto Catalán de Investigaciones Químicas) recibió el Premio Lilly a investigadores jóvenes en Química Orgánica y áreas relacionadas; e impartió una charla sobre las aplicaciones de catalizadores organometálicos en las transformaciones selectivas de compuestos aromáticos a través de reacciones que hasta hace poco parecían imposibles; pero que la catálisis organometálica de metales de transición ha permitido realizar. Esta ponencia se presentó en el simposio de Catálisis. Resumen de la comunicación

La siguiente conferencia invitada del simposio de Catálisis fue impartida por el profesor Graham J. Hutching (Universidad de Cardiff) que expuso resultados de oxidación de monóxido de carbono (CO) por oro (Au) sobre óxido de hierro, oxidación de alcohol bencílico por Au, paladio (Pd), y Au-Pd sobre dióxido de titanio (TiO2) y oxidaciones selectivas de tolueno. Resumen de la conferencia

La última conferencia que escuché fue de la Dra. Berta Gómez-Lor (Instituto de Ciencias de loa Materiales de Madrid, CSIC) en la que explicó las aplicaciones de los azatruxenos funcionalizados como materiales electrónicos orgánicos. Los truxenos son compuestos aromáticos polianulares que se pueden identificar como un fullereno abierto y extendido (bidimensional). Los azatruxenos son derivados del carbazol y contienen un átomo de nitrógeno en el anillo pentagonal. Resumen de la conferencia.

No pude asistir a la conferencia plenaria del profesor Eugenio Coronado (Universidad de Valencia) porque estaba invitado a asistir a la representación de «Oxígeno», de lo que hablaré en un próximo post.

Bernardo Herradón-G

CSIC

[email protected]

XXXIII Reunión Bienal de la Real Sociedad Española de Química. Primera crónica.

Ayer comenzó la XXXIII Reunión Bienal de la RSEQ, que se celebrará en Valencia hasta el próximo jueves 28 de julio. La reunión cuenta con la asistencia de alrededor de 700 participantes y un programa científico muy interesante con 5 ó 6 sesiones paralelas (dependiendo de las sesiones), en el que es difícil decidirse por alguna de las distintas opciones de los distintos simposiums, que constan de conferencias invitadas, comunicaciones orales (a partir de posters seleccionados) y comunicaciones «flash».

La Bienal consistirá en 8 conferencias plenarias y las siguientes secciones: Catálisis (CAT), Materiales Moleculares y Nanociencia (MMN), Química Física (QF), Estructura y Reactividad (ER), Química Inorgánica y Estado Sólido (QIES), Síntesis (SIN), Química Organometálica (QOM), Química Biológica (QB), Didáctica e Historia (DH), Alimentos y Agroquímica (AA), Química Analítica (QA), e Ingeniería química (IQ).

En este y en los próximos post iré resumiendo de lo que he escuchado en las sesiones. Como es imposible estar en más de un sitio a la vez, lamento dejar fuera de estos comentarios a ponencias interesantísimas a las qu no he podido asistir. Si algún asistente a la Bienal quiere hacer crónica de lo que ha escuchado, este blog está abierto a sus comentarios.

En el siguiente enlace se puede descargar el programa. El resumen de las conferencias y comunicaciones se puede descargar de la web del congreso (es un documento demasiado grande para colgarlo aquí).

La conferencia plenaria inaugural ha corrido a cargo del Profesor John F. Hartwig, de la Universidad de Illinois. La conferencia ha sido espléndida. Los resultados descritos son muy interesantes, resolviendo problemas sintéticos con gran eficacia. Por otro lado hay que destacar la manera en la que el Profesor Hartwig presentó sus resultados, haciendo hincapie en el diseño de los procesos sintéticos, de gran valor didáctico y con numerosos detalles mecanísticos que sirven para racionalizar los resultados y realizar un diseño adecuado de los procesos sintéticos. Los resultados son realmente interesantes desde el punto de vista de la síntesis orgánica; logrando la funcionalización de compuestos alifáticos y aromáticos a través de reacciones de borilación o sililación de enlaces C-H; un objetivo sintético difícil de conseguir. Las reacciones son catalizadas por complejos de Las reacciones además tienen quimioselectivas, regioselectivas (en el caso de los compuestos aromáticos, con selectividad complementaria a la de la reactividad tradicional) y, cuando es posible, también estereoselectiva. el método ha sido usado en síntesis total de varias moléculas complejas, incluidos productos naturales. Hartwig presentó diversos resultados sin publicar; siempre se agradecen estas primicias en un congreso. El resumen (del libro de resúmenes) de la conferencia de Hartwig se puede descargar aquí.

El profesor Dirk M. Guldi (Universidad de Erlangen) dio una conferencia invitada en el simposio de Materiales Moleculares y Nanociencia. Presentó los resultados de su investigación, cuyo objetivo es generar centros fotosintéticos artificiales. Para conseguirlo han usado porfirinas metálicas (principalmente de zinc) unidas covalentemente (a través de espaciadores) con una variedad de estructuras (fullerenos, ferrocenos, corrinas, etc.). Los resultados presentados prometen ser útiles en el diseño de compuestos orgánicos con capacidad de convertir la luz en energía eléctrica. El resumen (del libro de resúmenes) de la conferencia de Guldi se puede descargar aquí.

La profesora Luisa De Cola (Universidad de Münster) presentó sus resultados recientes encaminados a obtener nanoestructuras a partir de zeolitas. Su grupo ha conseguido resultados muy interesantes siendo capaces de introducir moléculas fluorescentes en la cavidad de las zeolitas y modificar su superficie con anticuerpos. Han sido capaces de obtener monocapas de zeolitas usando la técnica de la “litografía suave” (soft litography) desarrollada por Whitesides. Estas nanoestructuras tienen potenciales aplicaciones biomédicas. El resumen (del libro de resúmenes) de la conferencia de De Cola se puede descargar aquí.

La conferencia del profesor Luis Liz-Marzán (Universidad de Vigo, simposio de Química Física) también trató de la interacción entre la Química y la Nanociencia. Liz-Marzán describió resultados (algunos sin publicar) en los que se estudia el ensamblaje de nanopartículas (NPs) de oro principalmente. Hizo un repaso de los métodos descritos para lograr estos objetivos y las aplicaciones que pueden tener (nanosensores o convertidores de energía, entre ellos). Generan nanovarillas (melor llamarlos «nanorods», NRs) que tienen respuesta óptica anisotrópica. Estas estructuras, que me parecen arquitectónicamente-estructuralmente muy bellas, se generan de diversas maneras y el grupo de Liz-Marzán las ha generado estabilizadas por surfactantes «gemini» («gemelos») o péptidos. El resumen (del libro de resúmenes) de la conferencia de Liz-Marzán se puede descargar aquí.

La última hora de la mañana de la primera jornada se dedicó a las presentaciones «flash» de los 5 simposios paralelos. Asistí a la de Catálisis, donde se presentaron resultados diversos, desde las aplicaciones en síntesis orgánica a industriales, pasando por el uso de zeolitas y MOFs (Metal Organic Frameworks).

Bernardo Herradón-G.

CSIC

[email protected]