Archivado con la Etiqueta: Átomo

La Química: Ciencia central en el siglo XXI.

La madurez de la química como ciencia moderna se alcanzó a finales del siglo XVIII gracias a los experimentos de Lavoisier (1743-1794), que demostró la naturaleza de las reacciones químicas y la conservación de la masa en las mismas. Estas investigaciones y las de otros químicos relevantes de la época condujeron al estudio de sustancias naturales (lo que era lógico teniendo en cuenta que la química es una de las 5 ciencias naturales básicas); pero, con el objeto de imitar a la naturaleza, los químicos empezaron a preguntarse si se podrían generar sustancias naturales en un tubo de ensayo y, aún más relevante, obtener sustancias no naturales que podrían mejorar las propiedades de las sustancias naturales.

Continuar leyendo

Chadwick (1891-1974)

El 20 de octubre de 1891 nació James Chadwick (1891-1974). Físico inglés que fue galardonado con el Premio Nobel de Física en 1935 por el descubrimiento del neutrón. Con este descubrimiento se confirmaba la estructura del átomo: los electrones alrededor de un núcleo formado por protones y neutrones. La masa de estas dos partículas es muy parecida. El neutrón, debido a su ausencia de carga, fue mucho más difícil de caracterizar que el protón (la partícula con carga positiva elemental); pues la carga de éste permitió más fácilmente su aislamiento, lo que consiguió Rutherford en 1919. Además, a diferencia del electrón y del protón que son muy estables, el neutrón aislado es muy inestable, con una vida media de unos minutos, desintegrándose en un protón y un electrón.

Nota: Este breve recordatorio a James Chadwicl participa en el XXVIII Carnaval de Química(la del níquel, Z = 28), que aloja el magnífico blog Flagellum. Impulsando la comprensión de la ciencia (@3dciencia)

Bernardo Herradón
CSIC

Sagan y la tabla periódica

Este vídeo es un fragmento del episodio 9 de COSMOS, en el que el gran Carl Saganel maestro de todos nosotros«) explica el origen de los elementos químicos, la ordenación de la Tabla Periódica y la estabilidad de los átomos.

La explicación la da desde el Laboratorio Cavendish, un lugar fascinante en la historia de la ciencia, del que hemos hablado en el programa El Nanoscopio.

 

Nota: Este post participa en el XXVII Carnaval de Química que aloja el blog Educación Química.

Bernardo Herradón
CSIC

El hidrógeno

El hidrógeno (símbolo: H) es el átomo más sencillo que existe. Sólo un protón en su núcleo y un electrón alrededor de él. El hidrógeno ha sido muy importante en el desarrollo de los fundamentos de la Química: la explicación de las estructuras atómicas y molecular.

El protón es una partícula subatómica con carga positiva y el electrón es una partícula subatómica con carga negativa. La tercera partícula subatómica importante es el neutrón que también está en el núcleo atómico y que es neutra eléctricamente. El protón y el neutrón tiene aproximadamente la misma masa. El electrón es mucho más ligero (aproximadamente 1836 veces en reposo).

La principal característica de un elemento químico es el número de protones del núcleo, que se define como el número atómico. Puesto que la masa del protón y del neutrónes aproximadamente iguales, la suna del número de protones y neutrones es, redondeando a números enteros, la masa atómica (también frecuentemente denominado peso atómico). La masa de los electrones se desprecia a la hora de calcular la masa de los átomos.

Los elementos químicos pueden tener más de un tipo de átomos, que se conocen como isótopos. Los isótopos son los átomos de un elemento químico que, teniendo el mismo número de protones (que define el número atómico), poseen diferente número de neutrones; por lo tanto, masas distintas.

El hidrógeno es el componente más abundante del universo, constituyendo aproximadamente el 75% de la masa conocida y más del 90% de los átomos del universo. La razón de su abundancia es que fue el elemento químico que se formó primero en el origen del universo. Todos los elementos químicos naturales (hasta el número 92 en la tabla Periódica) se formaron como consecuencia de la nucleosíntesis tras el big-bang, primero el hidrógeno, luego el helio y, así sucesivamente, los elementos más pesados según su número atómico.

Las estrellas están principalmente constituida por hidrógeno en forma de plasma (un estado de la materia distinta a las habituales que conocemos: gas, líquido o sólido). En un plasma hay separación de iones. En las estrellas, los núcleos de hidrógeno (cargados positivamente) están agrupados y los electrones (cargados negativamente) están separados de los núcleos. Este estado de la materia tiene una altísima conductividad eléctrica.

El hidrógeno (elemento de número atómico = 1, ocupando el primer lugar en la Tabla Periódica) tiene tres isótopos; que difieren en el número de neutrones del núcleo, pudiendo ser cero, uno o dos. El que tiene un solo protón se denomina hidrógeno (o protio, un término poco usado) y es el isótopo más abundante. Se denota por 1H (el superíndice indica el peso del isótopo = número de protones + número de neutrones). El otro isótopo del hidrógeno es el deuterio, que tiene un protón y un neutrón en el núcleo, simbolizándose por 2H. La proporción de isótopos del hidrógeno en nuestro planeta es de entre 12500 y 1800 átomos de protio por cada átomo de deuterio (dependiendo del compuesto químico y de su origen). Existe un tercer isótopo del hidrógeno (el tritio, 3H) que tiene dos neutrones en el núcleo. Es mucho menos abundante que el deuterio. Se forma por la interacción de rayos cósmicos con la atmósfera terrestre. También se genera intencionadamente en reactores nucleares, pues tiene aplicaciones en investigaciones químicas, físicas y biológicas.

Un átomo, para mantener su neutralidad eléctrica, tiene que tener el mismo número de electrones que de protones. Si uno de ellos está en exceso, se forman los iones, que pueden ser negativos o positivos, dependiendo de que haya más electrones que protones (iones negativos o aniones) o menos electrones que protones (iones positivos o cationes).

Excepto en el caso de los gases nobles más ligeros, que se encuentran en estado monoatómico; el estado normal de todas las sustancias químicas es formar moléculas: los átomos quieren combinarse entre sí, compartiendo electrones que forman los enlaces químicos. Aunque el hidrógeno se puede generar en estado atómico, esto se consigue en condiciones muy especiales. La forma en la que el elemento químico hidrógeno se encuentra en la naturaleza es en forma de una molécula con dos átomos de hidrógeno, generando la molécula de dihidrógeno (H2, dónde el subíndice indica cuantos átomos están combinados en esa estructura), frecuentemente denominada sólo «hidrógeno» o «hidrógeno molecular». El dihidrógeno es un gas con un punto de ebullición de 20 K y con punto de fusión de 14 K a presión atmosférica.

El hidrógeno fue generado en el siglo XVII por Robert Boyle al tratar ciertos metales, como zinc o hierro, con ácidos fuertes; y fue aislado por Cavendish en 1766. El dihidrógeno se produce industrialmente por reacción de metano con agua generando una mezcla de monóxido de carbono (CO) y H2, que se denomina gas de síntesis (que también se puede obtener a partir de carbón). También se puede generar por electrolisis de la molécula de agua.

La principal aplicación industrial del hidrógeno es la producción del amoniaco; el compuesto químico más importante en la fabricación de abonos y fertilizantes, que mejoran nuestras cosechas proporcionando alimentos.

El dihidrógeno es un gas muy inflamable. Esta propiedad es debida a que la reacción con oxígeno genera mucho calor. Esta reacción, aunque potencialmente peligrosa, se puede usar de manera controlada para producir energía. La energía generada por la combustión del hidrógeno es limpia y eficaz. Si se resuelven problemas científico-técnicos, como la producción eficiente de H2 y su almacenamiento y transporte seguros; podremos beneficiarnos de la energía química del H2, llegando a alcanzar la denominada economía basada en el hidrógeno.

Bernardo Herradón-G.

CSIC

[email protected]