Archivado con la Etiqueta: Mecánica cuántica

Conmemorando a Max Born en el 135º aniversario de su nacimiento

Hoy se cumple el 135º aniversario del nacimiento de Max Born (1882-1970), que recibió el Premio Nobel de Física en 1954 (compartido con Walter Bothe), cuando acababa de retirarse de su cátedra de la Universidad de Edimburgo. La biografía y el resumen del trabajo científico de Born se puede encontrar en multitud de sitios en la web. Entre las contribuciones de Born a la Ciencia, cabe destacar sus investigaciones teóricas sobre la dinámica de los sistemas cristalinos, óptica y mecánica cuántica. Se ha afirmado que “en ningún lugar puede hacerse Física sin topar, de forma directa o indirecta, con el nombre de Max Born.

born_postcard

Aunque afirmaba modestamente que sus conocimientos de Química se limitaban al cloruro de sodio; sus investigaciones también han influido en la Química. Aparte de su aportación a la Mecánica cuántica, que son los fundamentos de la Química; también propuso la aproximación adiabática o de Born-Oppenheimer que facilita la resolución aproximada de las ecuación de ondas para sistemas moleculares, o el ciclo de Born-Haber que permite el cálculo de entalpías de reacciones químicas usando como base la Física teórica, este método se aplicó originalmente a la energía de la red cristalina, que no se puede obtener experimental. Además, Born estaba convencido que la Mecánica cuántica debe ser compatible con el concepto de estructura química.

Continuar leyendo

Recordando a Erwin Schrödinger

Nota preliminar: Este post fue originalmente publicado en la web Los Avances de la Química. Este este artículo se ha ampliado el texto, se han incluido enlaces a INTERNET y referencias bibliográficas.

El 12 de agosto de 1013, el Doodle de Google nos recuerda que se cumplen 126 años del nacimiento del físico austriaco Erwin Schrödinger (1887-1961), quien fue galardonado en 1933 con el premio Nobel de Física junto con el físico y matemático inglés Paul Dirac por sus contribuciones a la Mecánica Cuántica, imprescindible para el estudio del átomo.

La ecuación de Schrödinger es fundamental tanto en Física como en Química. A cada orbital atómico (definido por 3 números cuánticos n, l y m) le corresponde una función de onda, que es solución de la ecuación de Schrödinger, la cual sólo tiene solución analítica exacta para el átomo de hidrógeno e hidrogenoides (sistemas atómicos con un único electrón). Hay que recordar que el orbital es la descripción en tamaño, forma y orientación de la región del espacio en la que se puede encontrar un electrón; es, en cierto modo, la representación gráfica de la función de ondas de Schrödinger ψ(x, y, z) (de hecho, la amplitud de ψ, determinada por el cuadrado o conjugado complejo de ψ); por lo tanto, ψ no puede ser medida directamente, sino que es una herramienta matemática. También hay que recordar que cada orbital tiene una energía; y que ésta es la que establece el orden de llenado de los orbitales de un átomo, lo que, a su vez, se traduce en las propiedades químicas del elemento químico.

orbitron_TPDe http://winter.group.shef.ac.uk/orbitron/

Además, Schrödinger es conocido por la paradoja de su gato. ¿Quieres saber en qué consiste? ¡Preguntémosle a Sheldon Cooper! Lo puedes ver en el siguiente video.

Difusión en prensa: una manera de hacer cultura científica.

La noticia del Doodle ha tenido bastante repercusión en prensa. Según la búsqueda de Google, la noticia ha sido recogida en unas 19.000 noticias de prensa, algunos artículos muy cuidados y detallados; lo que demuestra que la prensa puede ser un excelente instrumento para realizar divulgación científica. Por cierto, no he encontrado referencias a la noticia ni a la conmemoración en ninguno de los tres grandes periódicos nacionales españoles (tampoco en PÚBLICO). A continuación se dan los enlaces a algunas noticias:

Tendencias. Artículo breve sobre el experimento y Schrödinger. Afirma que el científico es conocido por el experimento del gato; pero todos los científicos sabemos que no es así; como se ha indicado al comienzo de este post.

Ideal de Granada. Este periódico escribe un artículo muy completo y detallado, aunque menciona que se celebra el 124º aniversario y no el 126º. Este error también se ha producido en otros medios, a pesar de que se menciona la fecha de nacimiento: 1887; por lo tanto 2013-1887 = 126; un error científico serio (y no vale la excusa de que los periodistas son de letras).

La opinión de México. También incide en lo del 124º aniversario (sic).

The Guardian. Se hace un breve resumen biográfico de Schrödinger.

CNN México. Describe el experimento mental del gato, pero también explica brevemente su gran aportación a la mecánica cuántica. Un artículo breve y bien escrito en el que se incluye el enlace a su conferencia de aceptación del Premio Nobel en 1933.

Excelsior de México. Describe en detalle el experimento mental del gato y hace un brevísimo recorrido por la vida de Schrödinger.

De Fernando Gomollón (@gomobel)

Implicaciones filosóficas del trabajo de Schrödinger

La investigación de Schrödinger en Mecánica Cuántica ha sido una de las más importantes de la historia de la ciencia; con implicaciones importantes en Química. El nombre de Schrödinger está unido a todos los grandes físicos de comienzos del siglo XX, que con sus aportaciones a la Mecánica Cuántica cambiaron nuestra visión de la Naturaleza. Junto a Planck, Einstein, Bohr, Sommerfeld, de Broglie, Heissenberg, Born, Dirac, Pauli, Schrödinger forma parte del olimpo científico.

A pesar de sus brillantes aportaciones a la Mecánica Cuántica, Schrödinger, en cierto modo, se desmarcó de la interpretación que desde la Mecánica Cuántica se daba a los fenómenos naturales; nunca le gustó la visión probabilística y no-determinista y esta disconformidad le llevó a postular su experimento mental del gato. Esta visión no-determinista fue compartida (con matices) con Einstein; este último lo representó en su famosa frase «Dios no juega a los dados«, dirigida originalmente a Max Born (aunque la mayoría de los autores de bigrafías de Einstein, atribuyen que fue dirigida a Bohr).

Diapositiva1Desde mediados de la década de los años 1930s, Schrödinger realizó importnates contribuciones a la filosofía de la ciencia. Podemos destacar los libros Mi concepción del mundo, Mi vida (los dos se pueden encontrar en castellano, en la colección Metatemas de Tusquets), Mente y materia (de la misma colección que el anterior) y el libro ¿Qué es la vida? El aspecto físico de la célula viva (también de Metatemas). En este último libro intenta explicar la viada desde la perspectiva de las leyes de la Física. Este libro, originalmente publicado en 1944, fue un revulsivo para que varios jóvenes científicos (físicos y biólogos) se interesasen por los aspectos de la vida, especialmente la transmisión genética; y, es considerado uno de los puntos de rranque de la Biología Molecular. También recomiendo el libro Mente y materia ¿Qué es la vida? Sobre la vigencia de Erwin Schrödinger, de Gumbrecht y otros (Katz Editores, 2010), que analiza la obra filosófica de Schrödinger.

Bibliografía sobre Schrödinger y el origen de la mecánica cuántica

Schrödinger. Una ecuación y un gato. J. Navarro. NIVOLA. 2007.

The Fundamental Idea of Wave Mechanics. E. Schrödinger. Conferencia de aceptación del Premio Nobel.

Heissenberg. De la incertidumbre cuántica a la bomba atómica nazi. A. Fernández-Rañada. NIVOLA. 2008.

Thirty Years that Shook Physics. The Story of Quantum Theory. G. Gamow. DOVER. 1985.

Quantum Theory. A Graphic Guide. J. P. McEvoy y O. Zárate. Icon Books. 2007.

Einstein. 1905. J. Stachel. Editorial Crítica. 2005.

Introducción a los conceptos y teorías de las ciencias físicas. G. Holton. Editorial Reverté. 1976.

La física nueva y los cuantos. L. de Broglie. Editorial Losada. 1944.

Planck. La fuerza del deber. C. Olalla. NIVOLA. 2006.

Autobiografía científica y últimos escritos. M. Planck. NIVOLA. 2000.

The Strange Story of Quantum. B. Hoffmann. DOVER. 1959.

Nota 1: Gracias a Real Sociedad Española de Física por recomendar el vídeo y facilitar el link).

Nota 2: Este post participa en el XXVII Carnaval de Química, que se aloja en este blog Educación Química

 

Bernardo Herradón García
CSIC

12 de agosto de 2013: Schrödinger, el Doodle de Google y la cultura científica.

El 12 de agosto de 1013, el Doodle de Google nos recuerda que se cumplen 126 años del nacimiento del físico austriaco Erwin Schrödinger (1887-1961), quien fue galardonado en 1933 con el premio Nobel de Física junto con el físico y matemático inglés Paul Dirac por sus contribuciones a la Mecánica Cuántica, imprescindible para el estudio del átomo. La ecuación de Schrödinger es fundamental tanto en Física como en Química. A cada orbital atómico (definido por 3 números cuánticos n, l y m) le corresponde una función de onda, que es solución de la ecuación de Schrödinger, la cual sólo tiene solución analítica exacta para el átomo de hidrógeno e hidrogenoides (sistemas atómicos con un único electrón).

Además, Schrödinger es conocido por la paradoja de su gato. ¿Quieres saber en qué consiste? ¡Preguntémosle a Sheldon Cooper! Lo puedes ver en el siguiente video.

Difusión en prensa: una manera de hacer cultura científica.

La noticia del Doodle ha tenido bastante repercusión en prensa. Según la búsqueda de Google, la noticia ha sido recogida en unas 19.000 noticias de prensa, algunos artículos muy cuidados y detallados; lo que demuestra que la prensa puede ser un excelente instrumento para realizar divulgación científica. Por cierto, no he encontardo ninguna referencia a la noticia ni a la conmemoración en ninguno de los tres grandes periódicos nacionales españoles (tampoco en PÚBLICO). A continuación se dan los enlaces a algunas noticias:

Tendencias. Artículo breve sobre el experimento y Schrödinger. Afirma que el científico es conocido por el experimento del gato; pero todos los científicos sabemos que no es así; como se ha indicado al comienzo de este post.

Ideal de Granada. Este periódico escribe un artículo muy completo y detallado, aunque menciona que se celebra el 124º aniversario y no el 126º. Este error también se ha producido en otros medios, a pesar de que se menciona la fecha de nacimiento: 1887; por lo tanto 2013-1887 = 126; un error científico serio (y no vale la excusa de que los periodistas son de letras).

La opinión de México. También incide en lo del 124º aniversario (sic).

The Guardian. Se hace un breve resumen biográfico de Schrödinger.

CNN México. Describe el experimento mental del gato, pero también explica brevemente su gran aportación a la mecánica cuántica. Un artículo breve y bien escrito en el que se incluye el enlace a su conferencia de aceptación del Premio Nobel en 1933.

Excelsior de México. Describe en detalle el experimento mental del gato y hace un brevísimo recorrido por la vida de Schrödinger.

De Fernando Gomollón (@gomobel)

Implicaciones filosóficas del trabajo de Schrödinger

La investigación de Schrödinger en Mecánica Cuántica ha sido una de las más importantes de la historia de la ciencia; con implicaciones importantes en Química. El nombre de Schrödinger está unido a todos los grandes físicos de comienzos del siglo XX, que con sus aportaciones a la Mecánica Cuántica cambiaron nuestra visión de la Naturaleza. Junto a Planck, Einstein, Bohr, Sommerfeld, Heissenberg, Born, Dirac, Pauli, Schrödinger forma parte del olimpo científico.

A pesar de sus brillantes aportaciones a la Mecánica Cuántica, Schrödinger, en cierto modo, se desmarcó de la interpretación que desde la Mecánica Cuántica se daba a los fenómenos naturales; nunca le gustó la visión probabilística y no-determinista (compartida con Einstein) y esta disconformidad le llevó a postular su experimento mental del gato.

Desde mediados de la década de los años 1930s, Schrödinger realizó importnates contribuciones a la filosofía de la ciencia. Podemos destacar los libros Mi concepción del mundo, Mi vida (los dos se pueden encontrar en castellano, en la colección Metatemas de Tusquets), Mente y materia (de la misma colección que el anterior) y el libro ¿Qué es la vida? El aspecto físico de la célula viva (también de Metatemas). En este último libro intenta explicar la viada desde la perspectiva de las leyes de la Física. Este libro, originalmente publicado en 1944, fue un revulsivo para que varios jóvenes científicos (físicos y biólogos) se interesasen por los aspectos de la vida, especialmente la transmisión genética; y, es considerado uno de los puntos de rranque de la Biología Molecular. También recomiendo el libro Mente y materia ¿Qué es la vida? Sobre la vigencia de Erwin Schrödinger, de Gumbrecht y otros (Katz Editores, 2010), que analiza la obra filosófica de Schrödinger.

 

Nota: Gracias a Real Sociedad Española de Física por recomendar el vídeo y facilitar el link).

Bernardo Herradón García

CSIC

Los Premios Nobel olvidados y tardíos. Max Born.

Ya se están empezando a conocer los Premios Nobel de este año (los de Física y Química se anunciarán los días 5 y 6, repectivamente). En ese momento se empezarán a discutir sobre los galardonados, sobre los pronósticos fallidos y se recordarán a los científicos que, mereciéndolo, no lo recibieron y porqué no fueron galardonados. En algunos casos estos “olvidos” fueron intencionados, en otros no intencionados y en, muchos de ellos, para cumplir los deseos de Alfred Nobel: premiar como máximo a 3 científicos por año y especialidad y que estuvieran vivos en el momento del anuncio de la concesión.

Es justo recordar, aunque sólo sea nombrándolos, a algunos de estos olvidados de los Premios Nobel: Gandhi (Paz), Meitner o Slater (Física), Avery o Moncada (Medicina) y Mendeleev, Lewis, Eyring, Ingold, Heitler, London o Carothers (Química). Algunos de estos químicos serán objeto de próximos posts en este blog.

También son interesantes los casos de los científicos que recibieron el Premio Nobel al final de sus vidas, algunos incluso cuando ya prácticamente se habían retirado de la carrera científica o la investigación, por la que fueron galardonados, la habían hecho muchos años antes. Dos químicos muy relevantes, Georg Wittig (1898-1987) y Herbert C. Brown (1912-2004), lo recibieron en 1979 cuando posiblemente lo merecieron muchos antes por sus trabajos de aplicaciones sintéticas de compuestos de fósforo y boro, respectivamente.

Quiero dedicar el resto del artículo al físico Max Born (1882-1970), que recibió el Premio Nobel de Física en 1954 (compartido con Walter Bothe), cuando acababa de retirarse de su cátedra de la Universidad de Edimburgo. La biografía y el resumen del trabajo científico de Born se puede encontrar en multitud de sitios en la web. Entre las contribuciones de Born a la Ciencia, cabe destacar sus investigaciones teóricas sobre la dinámica de los sistemas cristalinos, óptica y mecánica cuántica. Se ha afirmado que “en ningún lugar puede hacerse Física sin topar, de forma directa o indirecta, con el nombre de Max Born.

born_postcard

Aunque afirmaba modestamente que sus conocimientos de Química se limitaban al cloruro sódico; sus investigaciones también han influido en la Química. Aparte de su aportación a la Mecánica cuántica, que son los fundamentos de la Química; también propuso la aproximación adiabática o de Born-Oppenheimer que facilita la resolución aproximada de las ecuación de ondas para sistemas moleculares, o el ciclo de Born-Haber que permite el cálculo de entalpías de reacciones químicas usando como base la Física teórica, este método se aplicó originalmente a la energía de la red cristalina, que no se puede obtener experimental. Además, Born estaba convencido que la Mecánica cuántica debe ser compatible con el concepto de estructura química.

Born recibió el Premio Nobel por su contribución a la Mecánica Cuántica, especialmente por su interpretación estadística de la función de onda. Aunque esta justificación de la Fundación Nobel para concederle el Premio es justa, es insuficiente; pues Max Born debe considerarse como el auténtico padre (quizás compartido con Niels Bohr) de la Mecánica Cuántica (él acuño el término, aunque esto sea anecdótico). Y es injusto que le galardonasen en 1954 cuando, sin duda, lo mereció al menos 20 años antes (en la época de Heissenberg, Schrödinger y Dirac).

Además tenía unas virtudes dignas de elogio como científico y ser humano: humilde, generoso, conciencia social y luchador por la paz.

Acabo de leer algunos ensayos escritos por Born a lo largo de su vida. Los ensayos están recogidos en los libros Ciencia y Conciencia en la Era Atómica (también contiene ensayos escritos por su esposa, Hedwig Born, una pacifista activa durante la Guerra Fría) y Physics in my Generation. Este segundo libro, aunque escrito en un lenguaje asequible (y prácticamente sin fórmulas) está más orientado a especialistas en Física.

El libro Ciencia y Conciencia en la Era Atómica tiene varios ensayos autobiográficos (escritos en diversas épocas de su vida), un ensayo excepcionalmente ameno sobre su investigación en la dinámica de las redes cristalinas, su conferencia de aceptación del Premio Nobel, un artículo sobre Einstein a través de su correspondencia científica y un ensayo sobre la amenaza atómica (muy presente en aquellos años).

En este último artículo, aunque toma como tema del mismo la amenaza atómica; va más allá, dando muestras de una calidad humana impresionante con reflexiones interesantes sobre ciudadanía (¡la anhelada relación entre Ciencia y ciudadanía!) y política.

La formación universitaria de Born fue en Matemáticas en Götinga, dónde estudió y fue colaborador (ayudante de docencia) de cuatro de los más grandes de la época: Klein, Hilbert, Minkowski y Runge. Aunque hubiese podido hacer una carrera brillante en Matemáticas, pensó que no estaría a la altura de sus maestros y prefirió dedicar sus esfuerzos a la Física teórica. Con los cuatro maestros matemáticos (quizás con Klein menos, como reconoce Born, pues Klein era menos asequible) mantuvo relaciones excelentes toda su vida.

En sus escritos defiende su filosofía científica (los ensayos son buenos ejemplos de Filosofía de la Ciencia) de trabajar en varios temas, criticando la especialización excesiva a la que se estaba llegando en la Ciencia (incluso en aquellos años 1950s, ¡si viviese ahora!).

Su actitud frente a los colegas es digna de elogio. Siempre favoreció a los jóvenes investigadores, reconociendo su talento. Su grupo de investigación (primero en Frankfurt y Götinga, hasta que el nazismo le obligó a emigrar, y luego en Edimburgo) fue un vivero o sitio de acogida de algunos de los más importantes científicos del siglo XX. Por citar los nombres más relevantes; tuvo como ayudantes a O. Stern (Premio Nobel), W. Pauli (Premio Nobel), W. Heissenberg (Premio Nobel), E. Hückel, F. Hund, W. Heitler; como a doctorandos a P. Jordan, M. Delbrück, J. R. Oppenheimer (del que no le gustó que posteriormente participase en el Proyecto Manhattan de preparación de la bomba atómica), M. Göppert-Mayer (Premio Nobel); como colaboradores a A. Landé, V. Fock, E. Hyllerass; y como anfitrión de J. E. Lennard-Jones, E. U. Condon, P. Dirac (Premio Nobel), E. Fermi (Premio Nobel), J. E. Tamm (Premio Nobel), N. Mott, F. London, L. Pauling (Premio Nobel), J. Von Neumann, E. Teller y E. P. Wigner (Premio Nobel). ¡Difícil encontrar una cantera mejor!

La relación con sus colaboradores fue especial. Califica a sus dos primeros ayudantes, Wolfgang Pauli y Werner Heissenberg, “como los más aplicados y geniales que uno puede imaginar”. La relación con este último fue especial, con gran generosidad. Cuando Heissenberg escribió el artículo (Z. Phys. 1925, 34, 879) que dio comienzo a la Mecánica cuántica trabajaba en el grupo de Born, este lo revisó y seguro que hizo aportaciones destacables al mismo; sin embargo no exigió firmarlo como autor (¿nos imaginamos esta situación actualmente? ¿qué un “jefe” decline figurar como autor de un artículo de un colaborador?). Posteriormente al envío a publicar de este artículo de Heissenberg, Born en colaboración con su discípulo Jordan desarrolló un formalismo matemático (basado en el álgebra de matrices, que dominaba por su pasado “matemático” y que no era muy común en la época y menos entre físicos) que hacía más asequible la mecánica cuántica, dando lugar dos artículos fundamentales (uno de ellos de Born y Jordan, Z. Phys. 1925, 34, 858; y el otro el famoso Drei-Männer-Arbeit, Born, Heissenberg y Jordan, Z. Phys. 1926, 35, 557).

¿Por qué tardó tanto el Comité Nobel en conceder el Premio Nobel a Born? Muy posiblemente fue debido a que físicos muy relevantes, fundadores de la Física cuántica, como Planck, Schrödinger, de Broglie y Einstein no creían en la Naturaleza estadística, no determinista, que se deducía de la Mecánica cuántica y de la que Born fue el máximo exponente y defensor. Hay que remarcar que fue Born el científico que interpretó el cuadrado (o conjugado complejo) de la función de ondas de Schródinger como una probabilidad, tan familiar para todos los físicos y químicos actualmente, pero revolucionario cuando lo propuso en 1926, y que daba sentido físico al concepto matemático de la función de onda introducido por Schrödinger en su versión ondulatoria de la Mecánica cuántica.

Born mantuvo una relación muy especial con Einstein. Fueron amigos toda la vida, a pesar de las discrepancias científicas sobre la Naturaleza descritas por la Mecánica cuántica. Como es bien sabido, y a pesar de ser uno de los precursores de la Mecánica cuántica. Einstein no creía en que la Naturaleza estuviese regida por leyes estadísticas. Born fue el receptor de la famosa frase “Dios no juega a los dados” escrita por Einstein. Born mantuvo toda su vida una admiración inmensa por Einstein al que consideraba un maestro, reconociéndole una influencia inmensa en su trabajo. Born fue un activo difusor de la Teoría de la Relatividad (plasmada en diversos artículos y en el libro Einstein’s Theory of Relativity), cuyo desarrollo consideraba genial y como él mismo afirmó, “decidió no trabajar en la Teoría de la Relatividad porque nunca podría llegar a la aportación genial de Einstein”.

Born_einstein_relatividad

En definitiva, Max Born ha sido uno de los más grandes científicos de la historia y también una persona digna de elogio por su compromiso ciudadano.

Bernardo Herradón

IQOG-CSIC

[email protected]