Archivado con la Etiqueta: Cristalografía

Escuela Internacional de Cristalografía

Este año 2018 el plantel de profesores de la International School of Crystallization de Granada es especialmente atractivo (ver el pdf adjunto). E muy interesante para los estudiantes españoles interesados en cristalización y síntesis de nuevos materiales, pues van a tener la posibilidad de conocer en una semana a un grupo de expertos muy selecto.

Hay algunas becas disponibles para estudiantes de Universidades y quedan algunas plazas para llegar a nuestro aforo de 110 participantes. Las becas están disponibles hasta el 27 de abril.

Más información.

 

Los cristales en nuestras vidas

El ser humano siempre ha estado fascinado por los cristales, presentes en numerosos minerales. Nuestros ancestros se sintieron atraídos por algunas de las propiedades de los minerales que encontraban a su alrededor: carácter ornamental, pigmentos, materiales de construcción o como menas para obtener metales diversos.

Las propiedades de los minerales dependen de su composición química y de la ordenación de los átomos en el espacio tridimensional. Si existe una disposición de átomos que se repite en las tres dimensiones del espacio, tenemos un cristal y la ciencia que los estudia es la cristalografía. La propiedad de repetición en el espacio indica dos cosas: orden y simetría. La ordenación de átomos en un cristal se conoce como estructura cristalina y el fragmento estructural mínimo que se repite en las tres direcciones del espacio se denomina celda unidad. A partir de una celda unidad se puede generar la estructura cristalina completa haciendo uso de operaciones de simetría (traslaciones, rotaciones, rotoinversiones, y sus combinaciones).

Por desgracia, en nuestro idioma, el término cristal se usa de manera errónea; pues lo que comúnmente denominamos cristales (de las ventanas, de las gafas o de la vajilla) son realmente vidrios que, auque sólidos, no son estructuras ordenadas como los auténticos cristales. Los átomos en los vidrios ocupan posiciones desordenadas y tienen mucha mayor movilidad que los átomos en un cristal, en los que el único movimiento son de vibración alrededor de su posición de equilibrio. De hecho al estado vítreo podemos considerarlo un estado intermedio entre el sólido y el líquido.

Más información sobre los cristales en la web de Principia.

La cristalografía es una ciencia interdisciplinar y multidisciplinar. Esto es debido a que en su desarrollo han intervenido numerosas ciencias y que sus resultados tienen consecuencias en matemáticas, física, química, ciencia de los materiales, biología, ciencia de los alimentos, geología, y diversas tecnologías e ingenierías.

El próximo jueves tendremos la oportunidad de conocer más sobre este apasionante tena con la conferencia que impartirá el profesor Martín Martínez-Ripoll en el curso de divulgación Los Avances de la Química y su Impacto en la Sociedad.

Más información en el cartel.

 

Bernardo Herradón

Premios Nobel olvidados: Bernal (1901-1971)

El 10 de mayo de 1901 nacía John Desmond Bernal (1901-1971) en Irlanda (en aquella época aún pertenecía al Reino Unido). Bernal fue uno de los científicos más destacados del siglo XX, con múltiples y variadas inquietudes, tanto científicas como humanas y sociales. Además fue un gran maestro que transmitió el valor de la ciencia a sus discípulos; algunos muy destacados. En Ciencia abrió numerosos caminos que luego dejó que algunos discípulos desarrollaron, demostrando una gran generosidad. Desde muy joven destacó por su gran capacidad intelectual, recibiendo el apodo de sage, por el que fue conocido toda su vida.

Bernal_biografia_SageTras estudiar Física en la Universidad de Cambridge, realizó la tesis doctoral con William H. Bragg (1862-1942, Premio Nobel de Física en 1915) en la Royal Institution (1923-1927), donde determinó la estructura del grafito en 1924, siendo ésta una contribución esencial para entender el enlace, la estructura molecular y las interacciones no covalentes de compuestos orgánicos. El artículo describiendo la estructura del grafito se puede descargar aquí. En esa publicación se propone un modelo de interacción de las láminas de grafeno (aún no se llamaba así) que constituyen el grafito.

Grafito_Cristal_Bernal

Continuar leyendo

Conmemoración científica del día: Fritz Zwicky

Hoy 14 de febrero de 2015 se conmemora el 117º aniversario del nacimiento de Fritz Zwicky (1898-1974). Aunque quizás no sea una figura muy conocida por el gran público, fue uno de los científicos claves en el desarrollo de la Física del siglo XX, especialmente de la Astrofísica.

Zwicky2Fuente: Decoded Science

Continuar leyendo

Gardner, matemáticas, química y cristalografía

¿Qué tiene que ver Martín Gardner, el prolífico y excelente divulgador de las matemáticas recreativas, y la química y la cristalografía?

Si quieres enterarte, acude a la sesión que tendrá lugar mañana lunes 3 de noviembre en la Facultad de Matemáticas de la Universidad Complutense de Madrid.

Con esta conferencia comienza mi participación en la Semana de laCiencia de este año, en la que también impartiré conferencias sobre La química y el futuro, con especial dedicación al grafeno y los materiales bidimensionales (el 5 de noviembre en la Fundación PONS); sobre La química, la alimentación y la moda/ciencia de la cocina  (en Coslada, el 6 de noviembre), mesa redonda sobre El grafeno (en el Colegio de Químicos de Madrid, el 13 de noviembre) y conferencias y mesas redondas en el SciFest sobre Aspectos generales de la divulgación científica y sobre La química en el cine  (en Cuenca, los días 14 y 15 de noviembre).

Como ya sabéis, la Semana de la Ciencia es la semana más larga del año, pues dura 14 días. Este año, del 3 al 16 de noviembre. Durante estas dos semanas se celebrarán centenares de actividades por toda España. La información sobre las actividades en Madrid se pueden ver en este enlace.

Nota: Este post participa en el VIII Festival de la Cristalografía, que organiza el blog Cristalografía, Química, Ciencia,…

Bernardo Herradón (@QuimicaSociedad)
Director del curso de divulgación Los Avances de la Química y su Impacto en la Sociedad.

 

 

La cristalografía en la historia de la química

Los días 9, 10 y 11 de julio se celebrará en la Universidad de La Rioja la quinta edición de la Escuela de Verano sobre Historia de la Química, dentro de la programación de los cursos de verano de esta universidad. En esta quinta edición se pretende considerar preferentemente la historia de la cristalografía y su conexión con la química.

Continuar leyendo

La enseñanza de la cristalografía

 

El Master en Cristalografía y Cristalización (MCC) es un curso internacional recomendado por la Unión Internacional de Cristalografía (IUCr) y la Asociación Europea de Cristalografía (ECA), que ofrece una visión unificada del estudio de los cristales, de sus propiedades y de sus aplicaciones en las distintas disciplinas científicas/técnicas que se consideran como «usuarias» de la cristalografía, incluyendo la química estructural, la ciencia de materiales, la biología estructural, el crecimiento de cristales, la cristalización industrial, la ingeniería química, la nanotecnología, la farmacología, la mineralogía y la física del estado sólido.

La coordinación y la enseñanza de este Master está a cargo de un equipo internacional de investigadores de distintas instituciones europeas con reconocido prestigio en el campo de la cristalografía y cristalización. Más de 50 profesores de 12 países aseguran que los alumnos se encontrarán con un ambiente de marcado carácter internacional e interdisciplinario. De hecho, todo el Máster se imparte en inglés, incluyendo las presentaciones y trabajos de los alumnos. La enseñanza del MCC es teórica y práctica, con un sesgo hacia la práctica y se estructura en tres módulos con contenidos coordinados; cuyo programa detallado se puede encontrar aquí.

La inscripción para la edición 20013-2014 del MCC está abierta. Hay disponibles becas y ayudas a la movilidad financiadas por la Unión Internacional de Cristalografía, La Asociacion Europea de Cristalografía, el CSIC, la Factoría Española de Cristalización y distintas sociedades científicas.

Más información se puede encontrar en la página web del curso o a través de correo eelctrónioc (ver más abajo) http://lafactoria.lec.csic.es/mcc o contáctenos por correo electrónico.

Los estudiantes que lo deseen pueden contactar con antiguos estudiantes del MCC a través de la página de Facebook.

El Máster en Cristalografía y Cristalización aúna enseñanza teórica (a) y práctica, tanto en el aula (b) como en visitas a laboratorios de investigación (d) y a empresas (e). La programación del master está organizada para permitir el máximo rendimiento de nuestro excelente profesorado, y la mayor interacción con el alumnado (c).

Remitido por:
Fermín Otálora y Juan Manuel García-Ruiz
Director y exdirector del Master de Cristalografía y Cristalización respectivamente
Laboratorio de Estudios Cristalográficos. Instituto Andaluz de Ciencias de la Tierra. CSIC-Universidad de Granada
[email protected], [email protected]

 

Grandes científicos: Dorothy Crowfoot-Hodgkin (1910-1994)

La insulina es una hormona peptídica que regula el metabolismo de los carbohidratos. Los esteroles constituyen un grupo de productos naturales (metabolitos secundarios) con multitud de funciones biológicas; siendo el colesterol el congénere más relevante, que es un componente esencial de las membranas de las células de los mamíferos, precursor de la biosíntesis de numerosos esteroides (esteroidogénesis, ver figura), entre los que se pueden destacar diversas hormonas responsables de los rasgos sexuales (testosterona, estradiol y progesterona), hormonas reguladoras del balance de agua y electrolitos (aldosterona), hormonas reguladoras de procesos inflamatorios e inmunomoduladores (cortisol) y ácidos biliares (ácido cólico) que favorecen la digestión de las grasas. La penicilina, descubierta por Fleming y estudiada por Florey y Chan (los tres compartieron el Premio Nobel de Medicina en 1945), supuso una revolución en el tratamiento de las enfermedades causadas por bacterias, iniciando un área de investigación multidisciplinar en antibióticos. La vitamina B12 es un grupo de moléculas relacionadas estructuralmente que es esencial para los mamíferos, cuya deficiencia causa serias enfermedades en el desarrollo del sistema nervioso y de los glóbulos rojos; el papel químico de la vitamina B12 es participando como cofactor en una amplia variedad de reacciones enzimáticas (isomerizaciones, deshalogenaciones y transferencias de grupos metilo). Una peculiaridad estructural de la vitamina B12 es la presencia de un enlace entre un átomo metálico (el cobalto) y un átomo de carbono, siendo uno de los pocos compuestos organometálicos presentes en la naturaleza.

Aparte de su gran relevancia biológica, ¿qué tienen en común estas cuatro moléculas? La respuesta: Dorothy Crowfoot-Hodgkin.

Crowfoot_dorothy

Más información.

Bernardo Herradón García

CSIC

[email protected]

Dorothy Crowfoot-Hodgkin: científica excepcional.

La insulina es una hormona peptídica que regula el metabolismo de los carbohidratos. Los esteroles constituyen un grupo de productos naturales (metabolitos secundarios) con multitud de funciones biológicas; siendo el colesterol el congénere más relevante, que es un componente esencial de las membranas de las células de los mamíferos, precursor de la biosíntesis de numerosos esteroides (esteroidogénesis, ver figura), entre los que se pueden destacar diversas hormonas responsables de los rasgos sexuales (testosterona, estradiol y progesterona), hormonas reguladoras del balance de agua y electrolitos (aldosterona), hormonas reguladoras de procesos inflamatorios e inmunomoduladores (cortisol) y ácidos biliares (ácido cólico) que favorecen la digestión de las grasas. La penicilina, descubierta por Fleming y estudiada por Florey y Chan (los tres compartieron el Premio Nobel de Medicina en 1945), supuso una revolución en el tratamiento de las enfermedades causadas por bacterias, iniciando un área de investigación multidisciplinar en antibióticos. La vitamina B12 es un grupo de moléculas relacionadas estructuralmente que es esencial para los mamíferos, cuya deficiencia causa serias enfermedades en el desarrollo del sistema nervioso y de los glóbulos rojos; el papel químico de la vitamina B12 es participando como cofactor en una amplia variedad de reacciones enzimáticas (isomerizaciones, deshalogenaciones y transferencias de grupos metilo). Una peculiaridad estructural de la vitamina B12 es la presencia de un enlace entre un átomo metálico (el cobalto) y un átomo de carbono, siendo uno de los pocos compuestos organometálicos presentes en la naturaleza.

Aparte de su gran relevancia biológica, ¿qué tienen en común estas cuatro moléculas? La respuesta: Dorothy Crowfoot-Hodgkin.

Dorothy Crowfoot nació el 12 de mayo de 1910 en El Cairo, donde su padre, John W. Crowfoot, trabajaba para el Servicio Egipcio de Educación. En 1916, se produjo su traslado a Sudán, donde su padre había sido nombrado Director Adjunto de Educación. Durante este tiempo, Dorothy y su madre (Grace M. Hood) tuvieron tiempo para fomentar aficiones: coleccionismo y dibujos de flores (actualmente donados al Jardín Botánico de Kew), expediciones arqueológicas, amor por el arte, especialmente en tejidos textiles antiguos (de los que llegó a ser una experta internacional). Durante esta época, se fomentó su afición de colores y pautas, que fueron de utilidad para su posterior trabajo en cristalografía. Durante la Primera Guerra Mundial, Dorothy y sus hermanas menores (Joan y Betty, que nacieron en Sudán) se trasladaron a vivir con sus abuelos en Worthing (Inglaterra).

El interés de Dorothy por la ciencia, y especialmente por la química, empezó muy pronto, a los 10 años ya realizaba experimentos sencillos en su casa y a los 15 años leyó el libro The Nature of the Things escrito por William H. Bragg (el padre de la cristalografía química, Premio Nobel de Física en 1915), en la que éste destacaba que esta técnica experimental, aún incipiente, permitiría “ver” los átomos y las moléculas; lo que le pareció fascinante. Recomiendo el magnífico post de Ramón Andrade contando la influencia que este libro tuvo en la joven Dorothy.

Dorothy siguió una formación en química estudiando en la Universidad de Oxford (1928-1932), asistiendo a clases impartidas por Robert Robinson (Química orgánica, Premio Nobel de Química en 1947) y Cyril N. Hishelwood (Química física, Premio Nobel en 1956) y con excelentes conferenciantes como Ernest Rutherford (Premio Nobel de Química en 1908), Niels Bohr (Premio Nobel de Física en 1922) y Peter Debye (Premio Nobel de Química en 1936). Pero la conferencia que más le impactó fue la de un joven cristalografo de la Universidad de Cambridge, John D. Bernal (1901-1971; en la imagen), con el que decidió que haría su tesis doctoral. Durante su estancia en Oxford, Dorothy había iniciado su investigación en cristalografía en Oxford, publicando con Herbert M. Powell su primer artículo sobre la estructura de los haluros de dialquiltalio (Nature 1932, 130, 131-132).

Bernal está considerado como uno de los científicos británicos más brillantes del siglo XX. Un científico capaz de trabajar en múltiples temas. Durante su estancia en el grupo de Bernal, Dorothy Crowfoot aprendió que no hay fronteras entre las ciencias, que se puede realizar una investigación entre la química, la bioquímica, la física, y la cristalografía.

Tras finalizar su tesis doctoral en 1934 (sobre la estructura de esteroides; corrigiendo las estructuras propuestas inicialmente, fórmula de la izquierda en la imagen), Dorothy volvió a la Universidad de Oxford, donde permaneció durante el resto de su vida, siendo uno de los científicos más queridos (debido a su generosidad) y admirados de su época, creando una escuela de investigadores en cristalografía con intereses multidisciplinares. Desde 1937, tras su matrimonio con Thomas Hodgkin, su apellido cambió a Crowfoot-Hodgkin.

Elucidar la estructura de las cuatro moléculas indicadas al comienzo de este artículo ya sería suficiente para considerar a Dorothy Crowfoot como uno de los más importantes cristalógrafos (independientemente del género) de la historia, pero además hizo muchas más cosas, científicas (entre otras moléculas importantes se pueden citar los estudios con morfina y con gliotoxina) y sociales.

Por supuesto, su investigaciones más recordadas (y que le llevaron la mayor parte de su vida) fueron la determinación estructural de la insulina y de la vitamina B12.

La insulina es una hormona que fue aislada en 1921 por Banting y Best de las células beta de los islotes de Langerhans del páncreas. Desde las primeras investigaciones se tuvo constancia de la relevancia de la insulina en el metabolismo de los carbohidratos y otras actividades fisiológicas; cuyo defecto podría conducir a enfermedades, como la diabetes.. Banting recibió el Premio Nobel de Medicina en 1923 (compartido con MacLeod), aunque con bastante polémica, que se puede leer aquí. Desde aquellos años, la insulina atrajo el interés de los químicos por conocer su estructura, siendo la cristalografía una herramienta poderosa en estos estudios. En aquella época no existín alas facilidades de equipamiento, métodos de cálculo y equipamineto informático de la actualidad (casi todo se tenía que hacer «a mano»), pero al mismo tiempo, este tipo de sstudios sirvieron para que la ciencia de la cristalografía química creciera. Em 1925 se pudo obtener insulina por cristalización (J. J. Abel) y en 1934 se identificó la presencia de cationes Zn (II) en la insulina aislada del páncreas.

La investigación de Crowfoot-Hodgkin sobre la insulina abarcó un periodo de 34 años, interrumpidos parcialmente por los estudios en vitamina B12 y penicilina, que empezó en 1934, cuando no se conocía la estructura primaria (ver imagen, determinada por Sanger en 1952; Premio Nobel de Química en 1958, por la determinación de la estructura de la insulina, y en 1980, por desarrollar métodos de secuenciación de ácidos nucleicos). La investigación de Crowfoot-Hodgkin en insulina permitió avanzar en el método del desplazamiento isomorfo, fundamental actualmente para determinar la estructura cristalina de proteínas. También permitió profundizar en los mecanismos de oligomerización de la insulina y sirvió de base para el diseño de derivados de insulina que podrían tener aplicaciones terapéuticas.

La investigación en la estructura de la vitamina B12 es una obra maestra de la ciencia. En su momento fue la estructura química no-oligomérica más compleja resuelta cristalográficamente. La vitamina B12 es un complejo de corrina con cobalto. La corrina es un sistema macro-heterocíclico, parecido al de la profirina (componente de los citocromos, grupo heme de la hemoglobina, y clorofila). El cobalto de la vitamina B12 es hexacoordinado: cuatro de las valencias de coordinación son con la corrina, una quinta con un grupo dimetilbenzimidazol y la sexta posición es el sitio de recatividad. Como comentado anteriormente, la vitamina B12 es realmente un grupo de moléculas que se diferencian en el sexto ligando unido al cobalto. Este ligando puede ser un grupo ciano (cianocobalamina), un grupo 5′-desoxiadenosil (adenosilcobalamina; con un enlace covalente entre el átomo metálico y el carbono C-5′ del nucleósido, un compuesto organometálico, ver segunda imagen a continuación), un grupo metilo (metilcobalamina; también con enlace alquilo-metal), o un grupo hidroxilo (hidroxocobalamina).

Por todas estas investigaciones, y especialmente por la elucidación estructural de la vitamina B12, fue galardonada con el Premio Nobel de Química en 1964. Sin duda, un reconocimiento merecido.

La investigación de Dorothy Crowfoot-Hodgkin se extendió hasta casi su muerte (el 29 de julio de 1994), trabajando durante casi 60 años con una inmensa influencia en cristalografía, química y bioquímica. Con su investigación, la cristalografía se convirtió en una herramienta poderosa de determinación estructural de moléculas complejas, a partir de la cual se podían obtener datos importantes para entender las propiedades biológicas (lo que hoy se conoce como relación estructura-actividad). Dorothy Crowfoot empezó a trabajar en una época en la que no existían ordenadores, las intensidades se tenían que “determinar a ojo” y las estructuras se tenían que “calcular a mano”, contribuyó a desarrollar métodos que facilitasen el trabajo de “traducir” el dato experimental (intensidad de señales que se corresponde con densidades electrónicas) en posiciones atómicas. El desarrollo de algoritmos para este fin y la disponibilidad de ordenadores potentes facilitó el trabajo de los cristalógrafos de generaciones posteriores.

Además, Dorothy Crowfoot-Hodgking desplegó una intensa actividad como activista por la paz, intentando establecer lazos científicos y sociales con Extremo Oriente (especialmente China), y promoviendo el papel de la mujer en la ciencia. Formó parte activa de la fundación de la International Union of Crystallography (IUCr). También fue un miembro activo de la conferencia de Pugwash, movimiento fundado por Bertrand Russell, cuyo objetivo es el desarme nuclear y la paz mundial, siendo su presidenta entre el periodo 1975-1988. Una frase que decía (y que la define) es «tener enemigos es una pérdida de tiempo y energía«.

Sin duda alguna, recordar a esta gran mujer y científico es muy apropiado en cualquier momento y circunstancia, y sirve para reconocer el gran papel de la mujer en ciencia.

Bibliografía y referencias en INTERNET

 

Nota-1: Este artículo es una versión ampliada del artículo originalmente publicado en la web de la SEBBM

Nota-2: Este post participa en el XXVII Carnaval de Química (el del cobalto, el metal de la vitamina B12), que aloja el blog Educación Química.

Bernardo Herradón García
CSIC
[email protected]

 

Preparando el Año Internacional de la Cristalografía. Máster en Cristalografía y Cristalización.

La Universidad Internacional Menéndez Pelayo (UIMP) y el Consejo Superior de Investigaciones Científicas (CSIC) organizan un máster en crsitalografía y cristalización. Esta área científica multidisciplinar es una de las más activas y prometedoras de la ciencia actual. Es una ciencia con una larga tradición y que actualmente tiene un carácter interdisciplinar, siendo indispensable en numerosas áreas científicas, como la física, la geoloía, la química, la biología molecular, la biofísica, la ciencia de los materiales, etc. La relevancia de la cristalografía ha llevado a la ONU a declarar el año 2014 como el Año Internacional de la Cristalografía. En la próxima edición de Anales de Química se publicará un artículo destacando los hitos más importantes en el desarrollo histórico de la cristalografía.

Durante septiembre, y hasta cubrir las plazas disponibles, seguirá abierta la inscripción en la quinta edición del máster Cristalografía y Cristalización (MCC) del Programa Oficial de Posgrado UIMP/CSIC. El máster es una gran oportunidad única de formación en cristalografía, que, a pesar de su relevancia, está normalmente poco representada en el curriculum de grado y posgrado a pesar de ser la disciplina que más premios Nobel ha conseguido.

El MCC es un máster internacional anual (Octubre-Julio) de 60 créditos ECTS y da acceso a doctorado. Está recomendado por las principales sociedades internacionales de Cristalografía y Cristalización (IUCr, ECA, IOCG, etc.) y cuenta con un profesorado internacional seleccionado entre los laboratorios europeos punteros en las diferentes disciplinas. Se imparte en inglés en Sevilla (Módulo 1, «Fundamentos») y diferentes laboratorios en España y otros paises Europeos (Módulo 2, «Prácticas»). El máster termina con una serie de cursos de especialización (Módulo 3, «Especialización») y con la presentación de un Trabajo Fin de Máster basado en los resultados obtenidos durante la estancia del Módulo 2.

Nota: La imagen se puede agrandar activándola.

El coste de la matricula es de 1.801 €uros. Hay becas de matrícula y movilidad disponibles para alumnos del máster.

Para más información: contactar con Dr. fermín Otálora ([email protected]) y en la página web http://lafactoria.lec.csic.es/mcc/

Remitido por:
Dr. Fermin Otálora
[email protected]

Linus Pauling (1901-1994)

Linus Pauling fue un genio que modernizó la química en el siglo XX. Introdujo la aplicación de los métodos de la mecánica cuántica a la química, siendo uno de los fundadores de la química cuántica. A partir de estos estudios, se tuvo una imagen más clara de las estructuras atómicas y del enlace químico. Fue pionero en la aplicación de los métodos de determinación de estructuras químicas para caracterizar sustancias químicas (iónicos o moleculares) y relacionar esa información para explicar fenómenos químicos, incluyendo la función biológica, y relacionándola con la estructura. Fue el gran maestro de la química estructural. Pauling estaba convencido de que entender la estructura es la clave para descifrar algunos de los misterios del universo. Su interés en biología y su amplio conocimiento de la química estructural, le convirtió en uno de los funadadores de las nuevas disciplinas de la biología molecular y la biomedicina.

pauling_einstein

Pauling nació en Oregon el 28 de febrero de 1901. Quedó huérfano de padre siendo muy joven. Por problemas económicos familiares, se le recomendó que estudiase una carrera práctica que le permitiese encontrar trabajo pronto. Por eso eligió estudiar ingeniería química en la Oregon State University (OSU), graduándose en 1922.

Desde muy joven, pensaba que la física era fundamental para entender el comportamiento químico y decidió realizar la tesis doctoral en química física. Solicito realizar la tesis en el grupo de Arthur Noyes, en el Instituto Tecnológico de California (Caltech), uno de los químicos físicos más prestigiosos de la época. Parece ser que Noyes dudó en su contratación porque Pauling era un ingeniero químico que no había asistido a cursos de química física avanzada. Sin embargo, convenció a Noyes y éste le admitió en su grupo; donde terminó la tesis en 1925.

Becado por la Fundación Guggenheim (en la época en la que ser becario era un honor y no era una palabra denigrada como actualmente) realizó estancias postdoctorales entre 1926 y 1927. Reconociendo el papel que la ciencia europea estaba realizando para entender la estructura de la materia, trabajó en Copenhage con Niels Bohr (Premio Nobel de Física en 1922), en Münich con Arnold Sommerfeld (no recibió el Premio Nobel, pero lo mereció varias veces), en Londres con William H. Bragg (Premio Nobel de Física en 1915) y en Göttingen con Max Born (Premio Nobel de Física en 1954). Sin duda, recibió una excelente formación teórica y experimental en mecánica cuántica y en cristalografía; en definitiva, en las estructuras de sustancias químicas, ya sean átomos, sales o moléculas.

De vuelta a Estados Unidos, fue contratado como profesor en Caltech donde permaneció hasta su jubilación en 1973. Tras esta fecha y hasta su muerte, el 19 de agosto de 1994, Pauling trabajó como profesor emérito en la Stanford University, donde se creó el Linus Pauling Institute (LPI). Pauling investigó de manera continuada durante 72 años, siendo un testigo privilegiado y protagonista del mayor desarrollo de la historia de la química. Posteriormente, su legado fue trasladado desde el LPI a su Alma Mater, la OSU.

Pauling fue un excelente docente y divulgador de la ciencia. En esta última faceta era frecuente su participación en medios diversos explicando ciencia. Un ejemplo se puede encontrar en el vídeo http://www.youtube.com/watch?v=KDDQMTfMZxE.

En su faceta docente, parece que era un profesor espectacular al que le gustaba ilustrar sus explicaciones teóricas con demostraciones prácticas en clase. Hay una característica que le iguala con Mendeleev. Cuando éste tuvo que explicar Química general a sus alumnos de primer curso de la Universidad de San Petersburgo, no encontró ningún libro de texto que le satisficiera; por lo que decidió escribir su libro Principios de química, cuya redacción le inspiró para crear la tabla periódica. Lo mismo le pasó a Pauling. Cuando tuvo que explicar Química general a alumnos de primer curso de Caltech, se dio cuenta que lo mejor era escribir su propio libro de texto. Así nació su libro General Chemistry, cuya primera edición se publicó en 1947, constituyendo un clásico de la enseñanza de la química desde entonces.

Realizó aportaciones fundamentales en las bases teóricas de la química, usando la mecánica cuántica para explicar la estructura molecular y el enlace químico. Introdujo conceptos fundamentales como la resonancia y la hibridación. De estos estudios surgió el libro Introduction to Quantum Mechanics with Applications to Chemistry (escrito en colaboración con E. Bright Wilson) en 1935; un clásico en química cuántica.

Pauling propulsó la Teoría de Enlace de Valencia (TEV) como una teoría más química e intuitiva que la alternativa Teoría de Orbiltaes Moleculares (TOM) para explicar el enlace y la estructura molecular. Debido que la TOM es más fácilmente implantable en un programa computacional que la TEV, aquella se desarrolló más que esta.

Pauling fue un pionero en el uso de la cristalografía en química, siendo el primer tema que desarrolló a su vuelta a Caltech en 1927. El uso de la difracción de rayos X y de la difracción de electrones le permitió profundizar en la estructura de compuestos inorgánicos (principalmente) y orgánicos y empezar a entender la naturaleza del enlace químico. De estas investigaciones surgieron las reglas de Pauling para predecir la estructura cristalina de compuestos iónicos y la escala de electronegatividad que desarrolló, que permitió determinar el carácter iónico/covalente (parcial) de los enlaces químicos.

Con estas investigaciones, Pauling se convirtió en la máxima autoridad en química estructural de la historia. Su amplio conocimiento lo plasmó en el libro The Nature of the Chemical Bond and the Structure of Molecules and Crystals; publicado por primera vez en 1939, convirtiéndose en uno de los libros científicos clásicos.

A mediados de la década de los años 1930s, Pauling empezó a interesarse en moléculas de interés biológico, especialmente proteínas. Pensaba que la función podría entenderse a partir de su estructura y que ésta podría determinarse por los métodos que él estaba usando para moléculas pequeñas, especialmente métodos de difracción.

Ya en 1934, en conexión con sus investigaciones sobre magnetismo de sustancias químicas, determinó las propiedades magnéticas de la hemoglobina. Ésta es la proteína transportadora de oxígeno en los glóbulos rojos de la sangre en los mamíferos y su estructura y funcionamiento son vitales para entender el mecanismo molecular del transporte de oxígeno y las consecuencias sobre la salud que puede tener su malfuncionamiento.

En 1940 hizo la propuesta novedosa de que la especificidad de las interacciones biológicas se debe a la complementariedad molecular, lo que permite explicar las interacciones entre los antígenos y anticuerpos (con implicaciones en inmunología) y la catálisis enzimática. En esta última área, propone que el aumento de la velocidad de una reacción enzimática se debe a la estabilización del estado de transición por interacción con la enzima. Esta hipótesis explica muchos resultados experimentales y sirve para el diseño de fármacos por inhibición enzimática.

Basándose en la complementariedad molecular, Pauling propuso en 1946 que un gen podría consistir en dos hebras mutuamente complementarias, un concepto que anticipó la propuesta de Watson y Crick para la estructura del DNA.

En los años 1940s, Pauling creó el área de la medicina molecular al proponer que la anemia falciforme estaba causada por la mutación de un único aminoácido de los 457 que forman la cadena monomérica de hemoglobina.

En 1948 propuso las estructuras secundarias de las cadenas peptídicas: la hélice alfa y la lámina beta. Su propuesta fue teórica basada en el empleo de modelos moleculares y su profundo conocimiento de la estructura molecular e interacciones no covalente. Poco después se encontró experimentalmente (por difracción de rayos X) que estas propuestas eran motivos estructurales frecuentes en la estructura de péptidos y proteínas.

Con sus propuestas y resultados experimentales sobre la estructura de proteínas, mecanismos de reacciones enzimáticas, complementariedad de proteínas y ácidos nucleicos, y en medicina molecular; se puede considerar a Pauling uno de los fundadores de la biología molecular y su moderna ramificación, la biomedicina.

En la época del Macarthismo en Estados Unidos, estuvo castigado sin pasaporte, lo que le impidió viajar a Inglaterra a para ver las fotografías de la difracción de rayos X tomadas por Rosalind Franklin. Si hubiese visto las fotografías, seguramente hubiese propuesto la estructura de doble hélice del DNA antes que Watson y Crick y la historia de la ciencia hubiese cambiado. Pero esto se ciencia ficción.

Ya en esa época había recibido el Premio Nobel de Química por sus aportaciones a la química estructural, Pacifista convencido y activo (de ahñi los problemas en su país), defendió el desarme nuclear. Por estas acciones, recibió el Premio Nobel de la Paz de 1962 (entregado en 1963). Ha sido la única persona que ha recibido dos Premios Nobel de manera individual: Química (1954) y Paz (1962).

Pauling defendió la hipótesis (que practicó) de que la ingesta de grandes cantidades de vitamina C podrían ser beneficiosa para la salud general. La vitamina C es fundamental en algunas funciones fisiológicas del organismo, como la biosíntesis de colágeno, carnitina y algunos neurotransmisores. La vitamina C es el cofactor de algunas enzimas como la prolinahidroxilasa y la lisina hidroxilasa. La vitamina C también tiene propiedades antioxidantes, siendo un agente eficaz en combatir el estrés oxidativo. Su deficiencia causa el escorbuto.

Como todas las vitaminas, las necesidades diarias son de unos pocos miligramos. Pauling creía que la vitamina C causaba un beneficio general a la salud y abogó por la ingesta maxima de vitamina C, que él mismo practicó tomando hata 100 veces la máxima ingesta diaria de vitamina C. Hoy en día sabemos que el consumo excesivo de vitamina C causa serios problemas de salud, especialmente problemas renales.

Debido a estas prácticas, a veces se ha relacionado a Pauling con la pseudociencia. Sin embargo, Pauling no hizo pseudociencia en su investigación sobre los efectos de la vitamina C. Hizo ciencia, sólo que se equivocó. Plantear hipótesis y teorías que generaciones posteriores prueban erróneas también es ciencia. En la época en la que Pauling empezó a aplicar su teoría (en él mismo), no era descabellado pensar que una vitamina con propiedades antioxidantes podría tener un efecto beneficioso independientemenete de la dosis. También este ejemplo, muestra las dos caras de las sustancias químicas y el hecho de que la dosis determina el efecto.

Sitios de interés y bibliografía:

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1954/pauling-bio.html#

http://en.wikipedia.org/wiki/Linus_Pauling

Linus Pauling Institute

Linus Pauling in his own words: selected writings, speeches, and interviews

G. R. Desiraju, Nature, 2000, 408, 407.

Libros de Pauling y sobre Pauling

La obra de Pauling en los fondos de la OSU

Pauling y el enlace químico (en los fondos de la OSU)

Pauling y la investigación en hemoglobina y la anemia falciforme (en los fondos de la OSU)

Pauling y la carrera por descubrir la estructura del DNA (en los fondos de la OSU)

The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry

Introduction to quantum mechanics: with applications to chemistry

General Chemistry

Linus Pauling and the Chemistry of Life (escrito por Tom Hager)

Honores recibidos por Linus Pauling (en los fondos de la OSU)

Pauling como maestro

Actividades por la paz (en los fondos de la OSU)

Bernardo Herradón García
CSIC
[email protected]