La copia de la conferencia de Álvaro Martínez del Pozo en el curso de divulgación los avances de la química y se impacto en la sociedad, se puede descargar en este enlace.
El colesterol: el bueno, el feo y el malo.
Archivado con la Etiqueta: Premio Nobel
Conmemorando a Max Born en el 135º aniversario de su nacimiento
Hoy se cumple el 135º aniversario del nacimiento de Max Born (1882-1970), que recibió el Premio Nobel de Física en 1954 (compartido con Walter Bothe), cuando acababa de retirarse de su cátedra de la Universidad de Edimburgo. La biografía y el resumen del trabajo científico de Born se puede encontrar en multitud de sitios en la web. Entre las contribuciones de Born a la Ciencia, cabe destacar sus investigaciones teóricas sobre la dinámica de los sistemas cristalinos, óptica y mecánica cuántica. Se ha afirmado que “en ningún lugar puede hacerse Física sin topar, de forma directa o indirecta, con el nombre de Max Born.
Aunque afirmaba modestamente que sus conocimientos de Química se limitaban al cloruro de sodio; sus investigaciones también han influido en la Química. Aparte de su aportación a la Mecánica cuántica, que son los fundamentos de la Química; también propuso la aproximación adiabática o de Born-Oppenheimer que facilita la resolución aproximada de las ecuación de ondas para sistemas moleculares, o el ciclo de Born-Haber que permite el cálculo de entalpías de reacciones químicas usando como base la Física teórica, este método se aplicó originalmente a la energía de la red cristalina, que no se puede obtener experimental. Además, Born estaba convencido que la Mecánica cuántica debe ser compatible con el concepto de estructura química.
Marie Curie en el 150 aniversario de su nacimiento
Hoy se conmemoran 150 años del nacimiento de Marie Curie (1867-1934), la científica más famosa de la historia y un icono de la ciencia.
Nacida Manya Sklodowska, en Polonia. Premio Nobel de Física en 1903 y de Química en 1911. La primera mujer en conseguir el Premio Nobel y la primera persona en conseguir dos Premios Nobel. Descubrió la radiactividad del torio, acuño el término “radiactividad”, aisló y caracterizó los elementos químicos radio y polonio. Marie Curie vivió una vida intensa. Aparte de su magnífico, admirable y ejemplar labor investigadora, fue una persona comprometida con los derechos humanos, la paz y la libertad. Estas virtudes las transmitió a sus hijas Irene (Premio Nobel de Química en 1935, compartido con su marido Frédéric Joliot-Curie) y Eva (su albacea testamentario y biógrafa).
Hace unos meses tuve la oportunidad de hablar sobre esta gran científica en el programa Lab24 de TVE. La entrevista se grabó en la entrada de uno de los pabellones de la Residencia de Estudiantes del CSIC, que Marie Curie visitó en sus viajes a España. El video se puede ver en este enlace.
En esta web le hemos dedicado varios post y hemos recordado en diversas ocasiones.
Algunas entradas son las siguientes:
Recordando a Marie Curie (1867-1934).
4 de julio de 1934. Fallecimiento de Marie Curie (1867-1934).
Tesis doctoral de Marie Curie.
Marie Curie y la radiactividad de la pechblenda.
Marie Curie y el Año Internacional de la Química.
Bernardo Herradón
Recordando a Heinrich Wieland: químico orgánico de variados intereses científicos.
El 4 de junio de 1877 nacía Heinrich Wieland (1877-1957). Fue galardonado con el Premio Nobel de Química correspondiente al año 1927, pero concedido en 1928. En aquella época no era raro que los galardones se concediesen con un año de retraso. La conferencia de aceptación del Premio Nobel se puede leer aquí.
Aunque Wieland fue premiado por sus investigaciones en ácidos biliares (el la imagen el ácido cólico, el principal ácido biliar), lo pudo ser por otros temas, pues investigó en numerosas áreas en la frontera entre la química y la bioquímica.
Hijo de un químico farmacéutico, Wieland recibió una sólida formación universitaria, estudiando en las universidades de Munich, Berlín y Stuttgart. Tras licenciarse, volvió a Munich para trabajar en el laboratorio de Adolf von Baeyer (1835-1917, Premio Nobel de Química en 1905), donde realizó la tesis con la dirección de Johannes Thiele (1865-1918), que presentó en 1901. Enseñó e investigó en la Universidad de Munich (Privat Dozent en 1904 y Senior Lecturer en 1913) hasta 1917, cuando se trasladó como catedrático a la Universidad Técnica de Munich, donde permaneció hasta 1921, trasladándose entonces a la Universidad de Freiburg. En 1925 regresó a la Universidad de Munich, aceptando una invitación de Richard Willstätter (1872-1942, Premio Nobel de Química en 1915) para sustituirlo como catedrático; permaneciendo allí hasta su jubilación en 1952.
La investigación de Wieland cubrió áreas muy extensas de la química orgánica y de la bioquímica; investigando en compuestos nitrogenados potencialmente explosivos (furoxanos y fulminatos), la descomposición de hidrazinas, identificando radicales nitrogenados, lo que supuso un avance considerable en la química de radicales libres orgánicos; así como en la reactividad de alquenos y compuestos aromáticos. Publicó casi 400 artículos científicos, en una enorme variedad de temas. La lista de sus publicaciones se puede descargar en este enlace.
En su madurez científica realizó un monumental trabajo en la química de productos naturales, estableciendo puentes entre la química orgánica y la bioquímica. En esta área podemos destacar sus contribuciones en la determinación estructural de alcaloides complejos (morfina, estricnina, alcaloides del curare), la investigación en péptidos naturales (siendo un pionero en este campo), pigmentos biológicos, y esteroides. Su investigación con este tipo de compuestos comenzó en 1912 con el estudio estructural de los ácidos biliares y culminó con la propuesta estructural del núcleo de los esteroides en 1932 [para lo que fue fundamental el trabajo cristalográfico de Bernal (1901-1971) y Crowfoot-Hodgkin, (1910-1994), Premio Nobel de Química en 1964]. Wieland también identificó el fundamental papel biológico de este tipo de productos naturales. En la imagen se muestran algunas de las relaciones biosintéticas entre los esteroides más importantes.
Paralelamente a esta investigación, Wieland fue también un pionero en enzimología, especialmente en la identificación de ciertas enzimas oxidativas (oxidasas), que actúan catalizando formalmente la transferencia de H2, por lo que se denominan deshidrogenasas. Wieland identificó este proceso como un mecanismo biológico universal de oxidación.
Sin duda alguna, Wieland demostró un conocimiento científico enciclopédico que le permitió investigar en numerosos temas, estableciendo relaciones entre las diversas áreas.
Bernardo Herradón (@QuimicaSociedad)
El nanoscopio
El próximo día 22 tendrá lugar en el IQOG-CSIC. una conferencia sobre las investigaciones que han sido galardonadas con el Premio Nobel de Química en 2014. Más detalles en el cartel.
Remitido por: Clara Uriel IQOG-CSIC
Conmemoración química del día: Woodward, el maestro de la síntesis orgánica.
El 10 de abril de 1917 nacía Robert B. Woodward (1917-1979), químico orgánico precoz que fue galardonado con el Premio Nobel de Química en 1965.
Pocas veces ha habido menos discusión sobre un Premio Nobel en Química. Woodward ha sido el gran maestro de la síntesis orgánica, que es el área de la química que se encarga de preparar sustancias en el laboratorio. Woodward realizó síntesis de numerosos productos naturales complejos, estableciendo las reglas de la ciencia de la síntesis orgánica en las que también hay bastante de creatividad artística. De hecho, a partir de Woodward, esta área de la química es la que se considera más cerca al arte.
Frase científica del día: Eyring y la descripción del estado de transición
Henry Eyring (1901-1981) ha sido uno de los grandes químicos del siglo XX. Fue una figura clave en la aplicación de la Mecánica Cuántica a la Química; pero su obra cumbre fue el desarrollo de la Teoría del Estado de Transición para explicar la cinética de las reacciones químicas. Ésta es una de las teorías más bellas de la historia de la ciencia y una de las más sólidas de la Química-Física.
Recordando a Emil Fischer el día de la concesión del Premio Nobel de Química
En el día de la concesión del Premio Nobel de Química, hay que recordar a uno de los gigante de la química, que recibió el segundo Premio Nobel (1902) de la especialidad: Hermann Emil Fischer; que nació el 9 de octubre de 1852
Recibió el Premio Nobel de Química en 1902 por sus investigaciones en moléculas de interés biológico: las purinas (primera imagen) y los azúcares (segunda imagen). La conferencia de aceptación del Premio Nobel se puede descargar aquí. Las imágenes con las estructuras de las purinas y las aldohexosas (carbohidratos) caracterizadas y sintetizadas por Fischer y su grupo se han obtenido de esta fuente.
Su investigación abarcó prácticamente todos los aspectos de la química orgánica de su tiempo, desde péptidos y proteínas a heterociclos, pasando por estereoquímica y síntesis orgánica.
Se le puede considerar uno de los padres de la bioquímica por sus investigaciones en moléculas de interés biológico y su hipótesis (metafórica) de la llave y la cerradura para explicar la especificidad enzimática; lo que constituye la base del reconocimiento molecular.
También fue un pionero en la investigación en química médica, sintetizando el primer barbiturato (el barbital, en la imagen) de utilidad terapéutica como sedante e hipnótico.
Durante la Primera Guerra Mundial fue el responsable de organizar la producción química alemana.
Su muerte no está clara, se dice que se suicidó (15 de julio de 1919), pues padecía cáncer de intestino muy avanzado y depresión causada por la muerte reciente de dos hijos (en 1915 y 1917).
Nota: Este post participa en el XXVIII Carnaval de Química (el del níquel, Z = 28), que aloja el excelente blog Flagellum. Impulsando la comprensión de la ciencia.
Bernardo Herradón CSIC
La ciencia en TVE
En el siguiente video hay una tertulia sobre ciencia en el programa «La noche en 24 horas«, del Canal 24 Horas (TVE) en la que participé. En la tertulia también estuvieron América Valenzuela y Sergio Martín. Hablamos del grafeno, de los premios IgNobel y de la bioquímica de la cebolla. Y se mencionaron a científicos importantes como Pasteur, Geim y Novoselov. Hay que agradecer que TVE dedique 12 minutos a la ciencia en horario de alta audiencia.
Aprovechando la «presencia» de Pasteur en este post, en las siguientes 4 imágenes destaco algunos aspectos de su biografía y sus aportaciones a la química y la biología; con algunas de sus frases que más me gustan.
Bernardo Herradón CSIC
La importancia de la síntesis orgánica
Un artículo describiendo el trabajo de Knowles, Noyori y Sharpless, galardonados con el Premio Nobel en 2001, y la importancia de la síntesis orgánica, se puede descargar aquí.
Paul Ehrlich y el nacimiento de la quimioterapia
Las infecciones por microorganismos han causado millones de muertes en la historia de la humanidad. Esta situación se empezó a paliar con el nacimiento de la quimioterapia, cuyos orígenes se remontan a las investigaciones de Paul Ehrlich (1854-1915). Ehrlich empezó su carrera científica estudiando la posibilidad de usar los colorantes desarrollados por Perkin en el teñido de tejidos de seres vivos (una técnica habitual actualmente, tanto en histología como en biología celular).
Ehrlich estaba convencido de que las enfermedades causadas por microorganismos se podrían curar por tratamiento con compuestos químicos, actualmente denominados antibióticos. Para ello deberían tener una toxicidad selectiva, es decir deberían ser más tóxicos para el patógeno que para el organismo huésped (el ser humano). A principios del siglo XX, el grupo de Ehrlich desarrolló el primer tratamiento quimioterapéutico de manera sistemática. Se basó en la estructura del atoxyl, un derivado de arsénico con propiedades antibióticas pero muy tóxico, y empezaron a preparar centenares de compuestos que se ensayaron para determinar su actividad biológica. Estas investigaciones dieron lugar al desarrollo del salvarsán, el primer agente quimioterapéutico eficaz, que, aunque tenía cierta toxicidad, esta era mucho menor que el atoxyl y además era mucho más activo frente a ciertos microorganismos. El salvarsán (o arsfenamine) fue el medicamento utilizado para tratar numerosas enfermedades (la sífilis, especialmente) hasta la década de 1940, en que fue reemplazado por la penicilina.
En la imagen siguiente, el cuaderno de laboratorio de Ehrlich describiendo el experimento con salvarsán (el compuesto 606 que probaron).
Aunque la estructura propuesta originalmente para el salvarsán es la indicada en la imagen anterior, actualmente sabemos que realmente es una mezcla de tres compuestos, indicados en la imagen siguiente. Dos de los tres compuestos son estructuras heterocíclicas conteniendo arsénico (ya se sabe, en química orgánica, un heterociclo es un sistema con algún átomo distinto de carbono). A este resultado se llegó en 2005, tras un siglo de controversia científica.
Bibliografía:
1) B. Herradón. Los Avances de la Química. Libros de la Catarata-CSIC, 2011.
2) N. C. Lloyd, H. W. Morgan, B. K. Nocholson, R. S. Ronimus. The Composition of Ehrlich’s Salvarsan: Resolution of a Century-Old Debate. Angew. Chem. Int. Ed. 2005, 44, 941-944.
3) F. Stern. Paul Ehrlich: The Founder of Chemotherapy. Angew. Chem. Int. Ed. 2004, 43, 4254-4261.
4) R. Koch. Paul Ehrlich. En Great Chemists, E. Farber (ed), 1941.
Nota: Este post participa en el XXVII Carnaval de Química, que se aloja en este blog Educación Química
Bernardo Herradón CSICComienza la reunión de Premios Nobel (lnml13)
En unos días comenzará la 63ª edición del Lindau Nobel Laureate Meeting (LNLM). Esta es una reunión en la que varias decenas de científicos galardonados con el Premio Nobel comparten unos días con centenares de jóvenes científicos de numerosos países; constituyendo un acontecimiento inolvidable para todos los participantes, especialmente para los jóvenes; pero también de agradable recuerdo para muchos de los galardonados participantes, como lo prueban muchas de sus declaraciones o las numerosas participaciones de algunos de ellos; el récord lo ostenta Ernst Otto Fischer (en la imagen), Premio Nobel de Química en 1973 por sus investigaciones en química organometálica, con 30 participaciones.
Como afirma el lema del LNLM, el principal objetivo de la reunión es educar, inspirar y conectar generaciones de científicos. Durante los 62 años del LNLM, miles de jóvenes investigadores han compartido numerosos y estimulantes momentos con científicos de altísimo nivel. La página web del LNLM recoge algunas anécdotas y aspectos destacados de las ediciones anteriores, que se pueden visitar en los siguientes enlaces (Parte 1, Parte 2, Parte 3). La página web también recoge imágenes de ediciones anteriores, como la de Heissenberg (Premio Nobel de Física en 1932 por sus aportaciones al desarrollo de la mecánica cuántica) y Hahn (Premio Nobel de Química en 1944 por el descubrimiento de la fisión nuclear).
La edición de este año se celebrará entre el 30 de junio y el 5 de julio contando con la participación de 35 Premios Nobel y 625 jóvenes científicos de 78 países. El LNLM de este año estará especialmente dedicado a la Química; con la presencia de 24 galardonados con el Premio Nobel de Química, a los que iré dedicando posts en los próximos días.
Aparte de los galardonados en Química, el LNLM contará también con Premios Nobel de otras tres especialidades: uno de la Paz (Ramos-Horta, 1996), seis de Física (Müller, 1987; Glauber, 2005; Hänsch, 2005; Chu, 2007; Wineland, 2012; y Wineland, 2012) y cuatro de Biología (Arber, 1978; Neher, 1991; Fischer, 1992; y zur Hausen, 2008).
El programa del lnlm13 se puede descargar aquí.
Durante el LNLM iré publicando artículo describiendo las actividades del mismo. Mi participación en el LNLM será como uno de los dos blogueros en español (junto a Lorena Guzmán, periodista científico chilena) y ha sido facilitado por invitación de la revista Investigación y Ciencia (parte del grupo Nature, que gestiona la Lindau Nobel Online Community).
Bernardo Herradón García CSIC [email protected]La belleza de la ciencia: la química
En este video (en inglés) podéis ver imágenes y comentarios sobre algunos aspectos que relacionan la química y la belleza. Es un video de la Fundación Nobel y cuenta con los comentarios de siete Premios Nobel: Agre (galardonado en 2003), Cech (1989), Heeger (2000), Herschbach (1986), Kohn (1998), Kroto (1996) y Marcus (1992). Se tratan asuntos como la belleza de la estructura química, la arquitectura molecular (con la fascinante hemoglobina), las ecuaciones matemáticas (la ecuación de Schrödinger), la simetría, las ecuaciones y fórmulas químicas, la tabla periódica, el color de las sustancias químicas, los experimentos, el fullereno (su descubrimiento, explicado por Kroto).
Imprescindible. ¡Cuanta balleza y química en poco más de 7 minutos!
Nota: Este post participa en la XXIII Edición del Carnaval de Química, que organiza el blog Moles y Bits: educación en ciencia y tecnología
Bernardo Herradón García CSIC [email protected]
El Premio Nobel de Química 2012 (conferencia en la RACEFyN)
Mañana habrá una sesión científica en la Real Academia de Ciencias Exactas, Físicas y Naturales (RACEFyN) sobre las investigaciones en receptores celulares que constituyen el Premio Nobel de Química 2012 a Lefkowitz y Kobilka. Los detalles se pueden encontrar en las siguientes imñagenes (se pueden agrandar pulsando sobre ellas).
Bernardo Herradón García CSIC [email protected]Los cuasicristales: un nuevo orden de la materia.
El pasado sábado, Dan Shechtman recibió el Premio Nobel de Química en Estocolmo por el descubrimiento de los cuasicristales. La conferencia de aceptación del Premio Nobel se titula «The Discovery of Quasi-Periodic Materials«. La autobiografía de Shechtman y el discurso de aceptación del premio Nobel se podrán descargar próximamente en el siguiente enlace.
Las diapositivas de la conferencia de Shechtman se pueden descargar aquí. A continuación destaco algunas de estas diapositivas.
Algunos descubrimientss sobre la estructura de la materia y sus propiedades realizadas en la década de 1980s.
Definición «clásica de un cristal».
«Nueva» definición de cristal.
De manera muy oportuna, la Real Academia de Ciencias Exactas Físicas y Naturales (RACEFyN) ha programado la conferencia «Los cuasicristales: un nuevo orden de la materia» para el próximo día 14 de diciembre. Los detalles de la conferencia se indican a continuación.
Bernardo Herradón García CSIC
[email protected]
Posibles Premios Nobel
El próximo miércoles 5 de octubre se anunciará la concesión del Premio Nobel de química 2011. Como todos los años, hay previsiones en diversos sitios en la web. No las he mirado y me aventuro a decir algunos nombres de químicos merecedores del premio (siempre hay la posibilidad de que lo gane un físico o un biólogo como ha ocurrido frecuentemente en los últimos años).
1) J. Fraser Stoddart y Jean-Pierre Sauvage. Por la investigación en catenanos, rotaxanos y estructuras similares; de interés teórico y aplicaciones tecnológica. Esta investigación fue iniciada por G. Schill, pero no sé si sigue vivo (dejó de publicar en 1993). Si lo está, debería compartir el premio, pues fue el pionero; aunque este tema de investigación ha llegado a la cumbre con Sauvage y Stoddart.
2) George M. Whitesides. Merecedor del premio por varios motivos (pionero en biocatálisis en química orgánica, química supramolecular y reconocimiento molecular, química de superficies, etc.). Si es galardonado por sus investigaciones aplicadas al desarrollo de materiales, lo podría compartir con Tobin J. Marks y Robert Langer.
3) Robert J. Cava. Aplicaciones de compuestos inorgánicos en el área de materiales, especialmente como superconductores. Hace muchísimos años que un químico inorgánico no recibe el premio (desde 1983, con Henry Taube).
4) Martin Karplus. Por desarrollar métodos computacionales para estudiar proteínas. Karplus también propuso la primera ecuación que relaciona la constante de acoplamiento en RMN y el ángulo diedro, una ecuación usada muchísimo en química. Si se le premia por el desarrollo de métodos computacionales, podría compartir con otros científicos, como William L. Jorgensen, Wilfred F. van Gunsteren o Norman L. Allinger.
5) K. C. Nicolaou, Samuel J. Danisheksky y Stuart L. Schreiber. Por sus desarrollos en síntesis total de producto naturales bioactivos y compuestos análogos que han permitido el estudio a nivel molecular de procesos biológicos, creando el área científcia de la Biología Química (Chemical Biology).
Bernardo Herradón García
CSIC
Marie Curie (1867-1934)
Hoy se cumplen 77 años del fallecimiento de Marie Curie a causa de una anemia perniciosa probablemente provocada por los muchos años de trabajo con material radiactivo. Marie Curie vivió una vida intesna. Aparte de su magnífico, admirable y ejemplar labor investigadora, fue una persona comprometida con los derechos humanos, la paz y la libertad. Estas virtudes las transmitió a sus hijas Irene (Premio Nobel de Química en 1935, compartido con su marido Frédéric Joliot-Curie) y Eva (su albacea testamentario y biógrafa).
Marie Curie
2011: Año Internacional de la Química declarado por la ONU y gestionado por la UNESCO y la IUPAC.
El motivo: la concesión del Premio Nobel de Química a Marie Curie. Su segundo Premio Nobel, tras el primero en Física en 1903. En principio, la Academia Sueca sólo había propuesto a Pierre Curie y a Henri Becquerel para el premio. Pero Pierre se negó a aceptarlo si no se reconocía el trabajo de su esposa Marie. El primer Premio Nobel fue por las investigaciones en radioactividad y el segundo por el aislamiento y caracterización del radio y polonio, dos elementos químicos radioactivos.
Por muchas razones (inteligencia, tenacidad, esfuerzo, se pionera en muchas cosas, ….) Marie Curie es una de las figuras más relevantes de la historia de la ciencia. En este año se ha escrito mucho sobre ella. Yo recomiendo que se lea la biografía que su hija (y albacea), Eva Curie, escribió. El título, sencillo, Madame Curie. El libro se puede puede encontrar en INTERNET ARCHIVE.
Miguel Carreras (Ciencia Viva) acaba de publicar un excelente artículo sobre Marie Curie en el suplemento IDEAR del PERIÓDICO DE ARAGÓN. Aparte de algunos hechos de la vida y obra de Marie Curie, el autor hace unos breves comentarios sobre las películas sobre la gran científica; que aunque no sean obras maestras del cine, pueden servir para recordar algunos pasaje de la vida de Marie Curie.
Hace un par de semanas, me invitaron al acto de graduación de bachillerato del IES Antonio Gaudí (Coslada, Madrid). Entre los diversas temas que traté que pudieran estimular a los jóvenes, hice un breve resumen de los hitos científicos y personales de la vida de Marie Curie. Entre estos últimos, destaqué la modestia personal, la labor humanitaria, su lucha por el bienestar de la humanidad; actitudes que transmitió a sus hijas. La copia de las diapositivas se pueden descargar aquí.
Bernardo Herradón-G.
CSIC
Los premios Nobel de Química de 2010 y la química del paladio
Publicado en la edición de febrero-marzo de 2011 de Química e Industria (nº 593). Descargar PDF.
Cien años de superconductividad
Artículo de Mª Teresa Martín Sánchez y manuela Martín Sánchez describiendo los orígenes de la superconductividad y estado actual del tema.
El artículo se puede descargar aquí.
Conferencias en la Fundación Areces
La Fundación Ramón Areces, en colaboración con la Real Academia de Ciencias Exactas, Físicas y Naturales, organiza dos conferencias conmemorativas del Año de la Química. Los ponentes son dos de los químicos más destacados del mundo. La información la podéis ver en la siguiente imagen (pulsar para ampliar).
Bernardo Herradón
IQOG-CSIC
Comentarios sobre las reacciones de Heck, Negishi y Suzuki. Premio Nobel de Química 2010.
La Real Academia Sueca de Ciencias ha anunciado la concesión del Premio Nobel de Química a Richard F. Heck (1931, Profesor Emérito de la Universidad de Delaware), Ei-ichi Negishi (1935, Universidad de Purdue) y Akira Suzuki (1930, Profesor Emérito de la Universidad de Hokkaido). La concesión del premio se ha hecho por su contribución al desarrollo de métodos sintéticos catalizados por complejos de paladio, que han permitido la preparación de miles de compuestos orgánicos de estructuras variadas, útiles en todas las áreas en las que influye la Química: salud, alimentación, agricultura, tecnología, materiales, energía, etc…
Las reacciones de formacion de enlaces C-C catalizadas por paladio ocupan una posicion predominante en Química orgánica. La reacción descubierta de manera independiente por Mirozoki y Heck a comienzo de los años 1970s, que posteriormenete desarrolló Heck, fue pionera y abrió el camino a posteriores desarrollos. La reacción de Heck es el acoplamiento entre una olefina ( nucleófilo) y un electrófilo (generalmente un haluro poco reactivo en reacciones de sustitución nucleófila). Reacciones similares a esta son la de Stille, Sonogashira y Negishi que implican el uso de organoestannanos, alquinos terminales, y organozincicos, respectivamente. Otra reacción útil desde el punto de vista sintético es la sustitucion nucleofila catalizada por paladio de compuestos alilicos, conocida como la reaccion de Tsuji-Trost. Un proceso análogo es la reaccion de Buchwald-Hartwig, que en su variante mas comun consiste en el acoplamiento de aminas secundarias con haluros de arilo. Muchas otras reacciones similares (Kumada, Hiyama, Ito, etc.) se han descrito en la bibliografía, pero no son tan versátiles como estas. Esquemas generales de estas reacciones se indican a continuación.
Otro proceso fundamental catalizado por paladio es el conocido como reaccion de Suzuki, la cual consiste en la formacion de enlaces carbono-carbono catalizada por paladio mediante el uso de organoboranos. La aplicacion mas extendida de esta reaccion consiste en la preparacion de biarilos y estructuras analogas las cuales son de gran importancia en areas como la preparacion de moleculas biologicamente activas o materiales conjugados con aplicaciones tecnologicas. Desde que fuera descrita por primera vez en el año 1979 por Suzuki esta reaccion ha estado sometida a un constante proceso de mejora enfocado a conseguir condiciones de reaccion cada vez mas suaves y tolerantes con el mayor numero de sustratos posibles. Estas mejoras se han centrado principalmente en el desrrollo de aditivos diseñados para actuar como ligandos y entre los que destacan los basados en fosfinas y mas recientemente carbenos heterociclicos. Asi, hoy en dia es posible llevar a cabo esta reaccion a temperatura ambiente incluso empleando los poco reactivos pero economicamente mas asequibles cloruros de arilo como electrofilos. En la figura siguiente se muestra la reacción general y algunas aplicaciones sintéticas.
Bibliografía
1) Classics in Total Synthesis. II. More Targets, Strategies, Methods. Nicolaou y Snyder, 2003.
2) Classics in Total Synthesis. Targets, Strategies, Methods. Nicolaou y Sorensen. 1996.
3) Portal de reacciones en Química Orgánica
4) Elements of Synthesis Planning. Hoffmann. 2009.
5) Synthesis of Biaryls. Cepanec. 2004.
Enrique Mann ([email protected]) y Bernardo Herradón ([email protected])
IQOG-CSIC
Premio Nobel de Química 2010. Unas pinceladas sobre las reacciones catalizadas por paladio.
La Real Academia Sueca de Ciencias ha anunciado la concesión del Premio Nobel de Química a Richard F. Heck (1931, Profesor Emérito de la Universidad de Delaware), Ei-ichi Negishi (1935, Universidad de Purdue) y Akira Suzuki (1930, Profesor Emérito de la Universidad de Hokkaido). La concesión del premio se ha hecho por su contribución al desarrollo de métodos sintéticos catalizados por complejos de paladio, que han permitido la preparación de miles de compuestos orgánicos de estructuras variadas, útiles en todas las áreas en las que influye la Química: salud, alimentación, agricultura, tecnología, materiales, energía, etc…
En el post de ayer, Bernardo Herradón citaba posibles ganadores del Premio Nobel de Química de este año. Entre ellos no cité a los galardonados de este año porque pensé que el Comité Nobel no iba a premiar investigaciones en metodología sintética promovida por complejos de metales de transición después de que el Premio Nobel de 2005 fuese concedido a investigadores trabajando en un área relacionada (la reacción de metátesis de olefinas, concedido a Chauvin, Grubbs y Schrock). Sin embargo, celebro mi equivocación, pues sin duda alguna Heck, Negishi y Suzuki lo merecían incluso muchos años antes. El galardón les llega cuando andan rondando los 80 años y se pueden considerar Premios Nobel tardíos, como comenté hace unos días en este blog.
Las reacciones de formacion de enlaces C-C catalizadas por paladio ocupan una posicion predominante en Química orgánica. La reacción descubierta de manera independiente por Mirozoki y Heck a comienzo de los años 1970s, que posteriormenete desarrolló Heck, fue pionera y abrió el camino a posteriores desarrollos. La reacción de Heck es el acoplamiento entre una olefina ( nucleófilo) y un electrófilo (generalmente un haluro poco reactivo en reacciones de sustitución nucleófila). Reacciones similares a esta son la de Stille, Sonogashira y Negishi que implican el uso de organoestannanos, alquinos terminales, y organozincicos, respectivamente. Otra reacción útil desde el punto de vista sintético es la sustitucion nucleofila catalizada por paladio de compuestos alilicos, conocida como la reaccion de Tsuji-Trost. Un proceso análogo es la reaccion de Buchwald-Hartwig, que en su variante mas comun consiste en el acoplamiento de aminas secundarias con haluros de arilo. Muchas otras reacciones similares (Kumada, Hiyama, Ito, etc.) se han descrito en la bibliografía, pero no son tan versátiles como estas. Esquemas generales de estas reacciones se indican a continuación.
Otro proceso fundamental catalizado por paladio es el conocido como reaccion de Suzuki, la cual consiste en la formacion de enlaces carbono-carbono catalizada por paladio mediante el uso de organoboranos. La aplicacion mas extendida de esta reaccion consiste en la preparacion de biarilos y estructuras analogas las cuales son de gran importancia en areas como la preparacion de moleculas biologicamente activas o materiales conjugados con aplicaciones tecnologicas. Desde que fuera descrita por primera vez en el año 1979 por Suzuki esta reaccion ha estado sometida a un constante proceso de mejora enfocado a conseguir condiciones de reaccion cada vez mas suaves y tolerantes con el mayor numero de sustratos posibles. Estas mejoras se han centrado principalmente en el desrrollo de aditivos diseñados para actuar como ligandos y entre los que destacan los basados en fosfinas y mas recientemente carbenos heterociclicos. Asi, hoy en dia es posible llevar a cabo esta reaccion a temperatura ambiente incluso empleando los poco reactivos pero economicamente mas asequibles cloruros de arilo como electrofilos. En la figura siguiente se muestra la reacción general y algunas aplicaciones sintéticas.
Una ampliación de este artículo se puede encontra aquí.
Enrique Mann ([email protected]) y Bernardo Herradón ([email protected])
IQOG-CSIC
La utilidad de las moléculas. El grafeno y el Premio Nobel de Física.
Esta mañana se ha anunciado la concesión del Premio Nobel de Física a André Geim y Konstantin Novoselov, profesores de la Universidad de Manchester, por la preparación y estudio de grafeno. La molécula de grafeno es un buen ejemplo de la utilidad de una sustancia química (es decir de la Química) como herramienta de trabajo para estudiar procesos físicos, aparte de su inmenso potencial práctico en electrónica molecular.
El grafeno es una molécula gigante formada por sólo átomos de carbono, que forman hexágonos, similares al benceno. El benceno es el prototipo de compuesto aromático, caracterizado por la existencia de 6 electrones pi. La existencia de este rasgo estructural confiere al benceno estabilidad termodinámica, reactividad química característica y propiedades eléctricas y magnéticas interesantes. La condensación y fusión de anillos hexagonales da lugar a compuestos aromáticos polianulares. Algunos ejemplos se muestran en la figura siguiente.
El grafeno es una molécula con un número inmenso (prácticamente infinitos, debido a la magnitud del número de Avogadro) de anilloa aromáticos fusionados y con el grosor de sólo un átomo de carbono. Esta es una peculiaridad responsable de las propiedades del grafeno: es una molécula plana con gran superficie. Debiodo a esta características, se pensaba que el grafeno no podría prepararse de manera eficaz. Este ha sido el mérito original de la investigación del grupo de Geim y Novoselov que utilizaron un método experimental novedoso para su preparación.
Hasta el descubrimiento y caracterización de los fullerenos (de lo que se ha cumplido hace unas semanas el 25 aniversario), el carbono se presentaba en dos formas alotrópicas: el grafito y el diamante. Las dos sustancias tienen la misma composición: carbono puro; pero que tienen propiedades físicas totalmente dispares. Mientras que el diamante es transparente, aislante eléctrico y muy duro; el grafito es negro, conduce la electricidad y blando, siendo fácilmente exfoliable. Estas diferencias son debidas a la distinta ordenación de los átomos de carbono en la estructura cristalina. Los átomos de carbono en el diamante están formando estructuras muy compactas, dónde cada átomo de carbono está unido a otros tres átomos con geometría tetraédrica. En esta estructura no hay electrones pi, con mayor movilidad que los sigma, y el diamante no conduce la electricidad. Por otro lado, el grafito está formado por capas de átomos de carbono formando estructuras hexagonales fusionadas con electrones pi con alta movilidad, que son los responsables de la conductividad eléctrica del grafito. Además, la gran cantidad de enlaces conjugados en las capas de carbono es responsable de su color negro. Las capas de grafito están unidas a través interacciones no-covalentes débiles, por dónde el grafito puede ser exfoliado. Si el grafito se muele en un polvo fino, resulta el carbón activo de estructura amorfa que tiene mucha superficie por unidad de masa y es un excelente adsorbente de sustancias químicas, usándose en una de las primeras etapas de la purificación de agua.
La figura siguiente muestra la relación entre el grafito, el grafeno, los nanotubos y los fullerenos.
Cada una de las capas carbonadas que forman el grafito es una molécula de grafeno. La obtención de una monocapa mejora considerablemente las propiedades del grafito. El grafeno es mejor conductor de la electricidad que el cobre, siendo mucho más ligero. El grafeno es transparente, muy duro, excelente conductor del calor, disipándolo eficazmente. Todas estas propiedades hacen de él un material para aplicaciones en electrónica molecular. Investigaciones futuras se enfocarán a la modificación química del grafeno con el objetivo de mejorar sus propiedades.
Como dato curioso, Geim recibió el Premio Ig Nobel en Física en el año 2000. Lo compartió con Michael Berry «por usar imanes para conseguir que las ranas leviten» (citación de la consecución del Ig Nobel). Aunque estos premios se conceden por investigaciones que al menos promueven una sonrisa, son importantes para observar como los campos magnéticos intensos afectan a las sustancias aparentemente no-magnética, debido a una pequeña respuesta diamagnética que, a nivel atómico y molecular, compensa la fuerza de la gravedad. Este tipo de experimentos sirven para modelizar entornos de gravedad cero. En 2001, Geim publicó un artículo (Physica B, 2001, 294-295, 736) en el que el coautor era su hamster.
Dentro de unas horas se anunciará la concesión del Premio Nobel de Química. Algunos merecedores: Whitesides, Schreiber, Schultz, Eschenmoser, Mukaiyama, Somorjai, Danishefsky, Marks, Parr, von Schleyer, Ziegler, Stoddart, Crabtree, Fréchet, Karplus, Lippard, Zare.
De las formas alotrópicas del carbono y su utilidad (y de otras utilidades de la Química, así como de su relación con otras ciencias) se hablará en la charla La Química: De “entre la Física y la Biología” a “entre la Biomedicina y la Ciencia de los Materiales”. Oportunidades de investigación en Química dentro del curso de divulgación Los Avances de la Química y su Impacto en la Sociedad (jueves 7 de octubre en la sede del IQOG).
Bernard0 Herradón
IQOG-CSIC
Los Premios Nobel olvidados y tardíos. Max Born.
Ya se están empezando a conocer los Premios Nobel de este año (los de Física y Química se anunciarán los días 5 y 6, repectivamente). En ese momento se empezarán a discutir sobre los galardonados, sobre los pronósticos fallidos y se recordarán a los científicos que, mereciéndolo, no lo recibieron y porqué no fueron galardonados. En algunos casos estos “olvidos” fueron intencionados, en otros no intencionados y en, muchos de ellos, para cumplir los deseos de Alfred Nobel: premiar como máximo a 3 científicos por año y especialidad y que estuvieran vivos en el momento del anuncio de la concesión.
Es justo recordar, aunque sólo sea nombrándolos, a algunos de estos olvidados de los Premios Nobel: Gandhi (Paz), Meitner o Slater (Física), Avery o Moncada (Medicina) y Mendeleev, Lewis, Eyring, Ingold, Heitler, London o Carothers (Química). Algunos de estos químicos serán objeto de próximos posts en este blog.
También son interesantes los casos de los científicos que recibieron el Premio Nobel al final de sus vidas, algunos incluso cuando ya prácticamente se habían retirado de la carrera científica o la investigación, por la que fueron galardonados, la habían hecho muchos años antes. Dos químicos muy relevantes, Georg Wittig (1898-1987) y Herbert C. Brown (1912-2004), lo recibieron en 1979 cuando posiblemente lo merecieron muchos antes por sus trabajos de aplicaciones sintéticas de compuestos de fósforo y boro, respectivamente.
Quiero dedicar el resto del artículo al físico Max Born (1882-1970), que recibió el Premio Nobel de Física en 1954 (compartido con Walter Bothe), cuando acababa de retirarse de su cátedra de la Universidad de Edimburgo. La biografía y el resumen del trabajo científico de Born se puede encontrar en multitud de sitios en la web. Entre las contribuciones de Born a la Ciencia, cabe destacar sus investigaciones teóricas sobre la dinámica de los sistemas cristalinos, óptica y mecánica cuántica. Se ha afirmado que “en ningún lugar puede hacerse Física sin topar, de forma directa o indirecta, con el nombre de Max Born.
Aunque afirmaba modestamente que sus conocimientos de Química se limitaban al cloruro sódico; sus investigaciones también han influido en la Química. Aparte de su aportación a la Mecánica cuántica, que son los fundamentos de la Química; también propuso la aproximación adiabática o de Born-Oppenheimer que facilita la resolución aproximada de las ecuación de ondas para sistemas moleculares, o el ciclo de Born-Haber que permite el cálculo de entalpías de reacciones químicas usando como base la Física teórica, este método se aplicó originalmente a la energía de la red cristalina, que no se puede obtener experimental. Además, Born estaba convencido que la Mecánica cuántica debe ser compatible con el concepto de estructura química.
Born recibió el Premio Nobel por su contribución a la Mecánica Cuántica, especialmente por su interpretación estadística de la función de onda. Aunque esta justificación de la Fundación Nobel para concederle el Premio es justa, es insuficiente; pues Max Born debe considerarse como el auténtico padre (quizás compartido con Niels Bohr) de la Mecánica Cuántica (él acuño el término, aunque esto sea anecdótico). Y es injusto que le galardonasen en 1954 cuando, sin duda, lo mereció al menos 20 años antes (en la época de Heissenberg, Schrödinger y Dirac).
Además tenía unas virtudes dignas de elogio como científico y ser humano: humilde, generoso, conciencia social y luchador por la paz.
Acabo de leer algunos ensayos escritos por Born a lo largo de su vida. Los ensayos están recogidos en los libros Ciencia y Conciencia en la Era Atómica (también contiene ensayos escritos por su esposa, Hedwig Born, una pacifista activa durante la Guerra Fría) y Physics in my Generation. Este segundo libro, aunque escrito en un lenguaje asequible (y prácticamente sin fórmulas) está más orientado a especialistas en Física.
El libro Ciencia y Conciencia en la Era Atómica tiene varios ensayos autobiográficos (escritos en diversas épocas de su vida), un ensayo excepcionalmente ameno sobre su investigación en la dinámica de las redes cristalinas, su conferencia de aceptación del Premio Nobel, un artículo sobre Einstein a través de su correspondencia científica y un ensayo sobre la amenaza atómica (muy presente en aquellos años).
En este último artículo, aunque toma como tema del mismo la amenaza atómica; va más allá, dando muestras de una calidad humana impresionante con reflexiones interesantes sobre ciudadanía (¡la anhelada relación entre Ciencia y ciudadanía!) y política.
La formación universitaria de Born fue en Matemáticas en Götinga, dónde estudió y fue colaborador (ayudante de docencia) de cuatro de los más grandes de la época: Klein, Hilbert, Minkowski y Runge. Aunque hubiese podido hacer una carrera brillante en Matemáticas, pensó que no estaría a la altura de sus maestros y prefirió dedicar sus esfuerzos a la Física teórica. Con los cuatro maestros matemáticos (quizás con Klein menos, como reconoce Born, pues Klein era menos asequible) mantuvo relaciones excelentes toda su vida.
En sus escritos defiende su filosofía científica (los ensayos son buenos ejemplos de Filosofía de la Ciencia) de trabajar en varios temas, criticando la especialización excesiva a la que se estaba llegando en la Ciencia (incluso en aquellos años 1950s, ¡si viviese ahora!).
Su actitud frente a los colegas es digna de elogio. Siempre favoreció a los jóvenes investigadores, reconociendo su talento. Su grupo de investigación (primero en Frankfurt y Götinga, hasta que el nazismo le obligó a emigrar, y luego en Edimburgo) fue un vivero o sitio de acogida de algunos de los más importantes científicos del siglo XX. Por citar los nombres más relevantes; tuvo como ayudantes a O. Stern (Premio Nobel), W. Pauli (Premio Nobel), W. Heissenberg (Premio Nobel), E. Hückel, F. Hund, W. Heitler; como a doctorandos a P. Jordan, M. Delbrück, J. R. Oppenheimer (del que no le gustó que posteriormente participase en el Proyecto Manhattan de preparación de la bomba atómica), M. Göppert-Mayer (Premio Nobel); como colaboradores a A. Landé, V. Fock, E. Hyllerass; y como anfitrión de J. E. Lennard-Jones, E. U. Condon, P. Dirac (Premio Nobel), E. Fermi (Premio Nobel), J. E. Tamm (Premio Nobel), N. Mott, F. London, L. Pauling (Premio Nobel), J. Von Neumann, E. Teller y E. P. Wigner (Premio Nobel). ¡Difícil encontrar una cantera mejor!
La relación con sus colaboradores fue especial. Califica a sus dos primeros ayudantes, Wolfgang Pauli y Werner Heissenberg, “como los más aplicados y geniales que uno puede imaginar”. La relación con este último fue especial, con gran generosidad. Cuando Heissenberg escribió el artículo (Z. Phys. 1925, 34, 879) que dio comienzo a la Mecánica cuántica trabajaba en el grupo de Born, este lo revisó y seguro que hizo aportaciones destacables al mismo; sin embargo no exigió firmarlo como autor (¿nos imaginamos esta situación actualmente? ¿qué un “jefe” decline figurar como autor de un artículo de un colaborador?). Posteriormente al envío a publicar de este artículo de Heissenberg, Born en colaboración con su discípulo Jordan desarrolló un formalismo matemático (basado en el álgebra de matrices, que dominaba por su pasado “matemático” y que no era muy común en la época y menos entre físicos) que hacía más asequible la mecánica cuántica, dando lugar dos artículos fundamentales (uno de ellos de Born y Jordan, Z. Phys. 1925, 34, 858; y el otro el famoso Drei-Männer-Arbeit, Born, Heissenberg y Jordan, Z. Phys. 1926, 35, 557).
¿Por qué tardó tanto el Comité Nobel en conceder el Premio Nobel a Born? Muy posiblemente fue debido a que físicos muy relevantes, fundadores de la Física cuántica, como Planck, Schrödinger, de Broglie y Einstein no creían en la Naturaleza estadística, no determinista, que se deducía de la Mecánica cuántica y de la que Born fue el máximo exponente y defensor. Hay que remarcar que fue Born el científico que interpretó el cuadrado (o conjugado complejo) de la función de ondas de Schródinger como una probabilidad, tan familiar para todos los físicos y químicos actualmente, pero revolucionario cuando lo propuso en 1926, y que daba sentido físico al concepto matemático de la función de onda introducido por Schrödinger en su versión ondulatoria de la Mecánica cuántica.
Born mantuvo una relación muy especial con Einstein. Fueron amigos toda la vida, a pesar de las discrepancias científicas sobre la Naturaleza descritas por la Mecánica cuántica. Como es bien sabido, y a pesar de ser uno de los precursores de la Mecánica cuántica. Einstein no creía en que la Naturaleza estuviese regida por leyes estadísticas. Born fue el receptor de la famosa frase “Dios no juega a los dados” escrita por Einstein. Born mantuvo toda su vida una admiración inmensa por Einstein al que consideraba un maestro, reconociéndole una influencia inmensa en su trabajo. Born fue un activo difusor de la Teoría de la Relatividad (plasmada en diversos artículos y en el libro Einstein’s Theory of Relativity), cuyo desarrollo consideraba genial y como él mismo afirmó, “decidió no trabajar en la Teoría de la Relatividad porque nunca podría llegar a la aportación genial de Einstein”.
En definitiva, Max Born ha sido uno de los más grandes científicos de la historia y también una persona digna de elogio por su compromiso ciudadano.
Bernardo Herradón
IQOG-CSIC